In March of this year, Google DeepMind’s computer program AlphaGo defeated world Go champion Lee Sedol. This was hailed as a great triumph of artificial intelligence and signaled to many the beginning of the new age when machines take over. I believe this is true but the real lesson of AlphaGo’s win is not how great machine learning algorithms are but how suboptimal human Go players are. Experts believed that machines would not be able to defeat humans at Go for a long time because the number of possible games is astronomically large,
moves, in contrast to chess with a paltry
moves. Additionally, unlike chess, it is not clear what is a good position and who is winning during intermediate stages of a game. Thus, any direct enumeration and evaluation of possible next moves as chess computers do, like IBM’s Deep Blue that defeated Gary Kasparov, seemed to be impossible. It was thought that humans had some sort of inimitable intuition to play Go that machines were decades away from emulating. It turns out that this was wrong. It took remarkably little training for AlphaGo to defeat a human. All the algorithms used were fairly standard – supervised and reinforcement backpropagation learning in multi-layer neural networks1. DeepMind just put them together in a clever way and had the (in retrospect appropriate) audacity to try.
The take home message of AlphaGo’s success is that humans are very, very far away from being optimal at playing Go. Uncharitably, we simply stink at Go. However, this probably also means that we stink at almost everything we do. Machines are going to take over our jobs not because they are sublimely awesome but because we are stupendously inept. It is like the old joke about two hikers encountering a bear and one starts to put on running shoes. The other hiker says: “Why are you doing that? You can’t outrun a bear.” to which she replies, “I only need to outrun you!” In fact, the more difficult a job seems to be for humans to perform, the easier it will be for a machine to do better. This was noticed a long time ago in AI research and called Moravec’s Paradox. Tasks that require a lot of high level abstract thinking like chess or predicting what movie you will like are easy for computers to do while seemingly trivial tasks that a child can do like folding laundry or getting a cookie out of a jar on an unreachable shelf is really hard. Thus high paying professions in medicine, accounting, finance, and law could be replaced by machines sooner than lower paying ones in lawn care and house cleaning.
There are those who are not worried about a future of mass unemployment because they believe people will just shift to other professions. They point out that a century ago a majority of Americans worked in agriculture and now the sector comprises of less than 2 percent of the population. The jobs that were lost to technology were replaced by ones that didn’t exist before. I think this might be true but in the future not everyone will be a software engineer or a media star or a CEO of her own company of robot employees. The increase in productivity provided by machines ensures this. When the marginal cost of production goes to zero (i.e. cost to make one more item), as it is for software or recorded media now, the whole supply-demand curve is upended. There is infinite supply for any amount of demand so the only way to make money is to increase demand.
The rate-limiting step for demand is the attention span of humans. In a single day, a person can at most attend to a few hundred independent tasks such as thinking, reading, writing, walking, cooking, eating, driving, exercising, or consuming entertainment. I can stream any movie I want now and I only watch at most twenty a year, and almost all of them on long haul flights. My 3 year old can watch the same Wild Kratts episode (great children’s show about animals) ten times in a row without getting bored. Even though everyone could be a video or music star on YouTube, superstars such as Beyoncé and Adele are viewed much more than anyone else. Even with infinite choice, we tend to do what our peers do. Thus, for a population of ten billion people, I doubt there can be more than a few million that can make a decent living as a media star with our current economic model. The same goes for writers. This will also generalize to manufactured goods. Toasters and coffee makers essentially cost nothing compared to three decades ago, and I will only buy one every few years if that. Robots will only make things cheaper and I doubt there will be a billion brands of TV’s or toasters. Most likely, a few companies will dominate the market as they do now. Even, if we could optimistically assume that a tenth of the population could be engaged in producing goods and services necessary for keeping the world functioning that still leaves the rest with little to do.
Even much of what scientists do could eventually be replaced by machines. Biology labs could consist of a principle investigator and robot technicians. Although it seems like science is endless, the amount of new science required for sustaining the modern world could diminish. We could eventually have an understanding of biology sufficient to treat most diseases and injuries and develop truly sustainable energy technologies. In this case, machines could be tasked to keep the modern world up and running with little need of input from us. Science would mostly be devoted to abstract and esoteric concerns.
Thus, I believe the future for humankind is in low productivity occupations – basically a return to pre-industrial endeavors like small plot farming, blacksmithing, carpentry, painting, dancing, and pottery making, with an economic system in place to adequately live off of this labor. Machines can provide us with the necessities of life while we engage in a simulated 18th century world but without the poverty, diseases, and mass famines that made life so harsh back then. We can make candles or bread and sell them to our neighbors for a living wage. We can walk or get in self-driving cars to see live performances of music, drama and dance by local artists. There will be philosophers and poets with their small followings as they have now. However, even when machines can do everything humans can do, there will still be a capacity to sustain as many mathematicians as there are people because mathematics is infinite. As long as P is not NP, theorem proving can never be automated and there will always be unsolved math problems. That is not to say that machines won’t be able to do mathematics. They will. It’s just that they won’t ever be able to do all of it. Thus, the future of work could also be mathematics.
- Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).
Like this:
Like Loading...