Confusion about consciousness

I have read two essays in the past month on the brain and consciousness and I think both point to examples of why consciousness per se and the “problem of consciousness” are both so confusing and hard to understand. The first article is by philosopher Galen Strawson in The Stone series of the New York Times. Strawson takes issue with the supposed conventional wisdom that consciousness is extremely mysterious and cannot be easily reconciled with materialism. He argues that the problem isn’t about consciousness, which is certainly real, but rather matter, for which we have no “true” understanding. We know what consciousness is since that is all we experience but physics can only explain how matter behaves. We have no grasp whatsoever of the essence of matter. Hence, it is not clear that consciousness is at odds with matter since we don’t understand matter.

I think Strawson’s argument is mostly sound but he misses on the crucial open question of consciousness. It is true that we don’t have an understanding of the true essence of matter and we probably never will but that is not why consciousness is mysterious. The problem is that we do now know whether the rules that govern matter, be they classical mechanics, quantum mechanics, statistical mechanics, or general relativity, could give rise to a subjective conscious experience. Our understanding of the world is good enough for us to build bridges, cars, computers and launch a spacecraft 4 billion kilometers to Pluto, take photos, and send them back. We can predict the weather with great accuracy for up to a week. We can treat infectious diseases and repair the heart. We can breed super chickens and grow copious amounts of corn. However, we have no idea how these rules can explain consciousness and more importantly we do not know whether these rules are sufficient to understand consciousness or whether we need a different set of rules or reality or whatever. One of the biggest lessons of the twentieth century is that knowing the rules does not mean you can predict the outcome of the rules. Not even taking into the computability and decidability results of Turing and Gödel, it is still not clear how to go from the microscopic dynamics of molecules to the Navier-Stokes equation for macroscopic fluid flow and how to get from Navier-Stokes to the turbulent flow of a river. Likewise, it is hard to understand how the liver works, much less the brain, starting from molecules or even cells. Thus, it is possible that consciousness is an emergent phenomenon of the rules that we already know, like wetness or a hurricane. We simply do not know and are not even close to knowing. This is the hard problem of consciousness.

The second article is by psychologist Robert Epstein in the online magazine Aeon. In this article, Epstein rails against the use of computers and information processing as a metaphor for how the brain works. He argues that this type of restricted thinking is why we can’t seem to make any progress understanding the brain or consciousness. Unfortunately, Epstein seems to completely misunderstand what computers are and what information processing means.

Firstly, a computation does not necessarily imply a symbolic processing machine like a von Neumann computer with a central processor, memory, inputs and outputs. A computation in the Turing sense is simply about finding or constructing a desired function from one countable set to another. Now, the brain certainly performs computations; any time we identify an object in an image or have a conversation, the brain is performing a computation. You can couch it in whatever language you like but it is a computation. Additionally, the whole point of a universal computer is that it can perform any computation. Computations are not tied to implementations. I can always simulate whatever (computable) system you want on a computer. Neural networks and deep learning are not symbolic computations per se but they can be implemented on a von Neumann computer. We may not know what the brain is doing but it certainly involves computation of some sort. Any thing that can sense the environment and react is making a computation. Bacteria can compute. Molecules compute. However, that is not to say that everything a brain does can be encapsulated by Turing universal computation. For example, Penrose believes that the brain is not computable although as I argued in a previous post, his argument is not very convincing. It is possible that consciousness is beyond the realm of computation and thus would entail very different physics. However, we have yet to find an example of a real physical phenomenon that is not computable.

Secondly, the brain processes information by definition. Information in both the Shannon and Fisher senses is a measure of uncertainty reduction. For example, in order to meet someone for coffee you need at least two pieces of information, where and when. Before you received that information your uncertainty was huge since there were so many possible places and times the meeting could take place. After receiving the information your uncertainty was eliminated. Just knowing it will be on Thursday is already a big decrease in uncertainty and an increase in information. Much of the brain’s job at least for cognition is about uncertainly reduction. When you are searching for your friend in the crowded cafe, you are eliminating possibilities and reducing uncertainty. The big mistake that Epstein makes is conflating an example with the phenomenon. Your brain does not need to function like your smartphone to perform computations or information processing. Computation and information theory are two of the most important mathematical tools we have for analyzing cognition.

Chomsky on The Philosopher’s Zone

Listen to MIT Linguistics Professor Noam Chomsky on ABC’s radio show The Philosopher’s Zone (link here).  Even at 87, he is still as razor sharp as ever. I’ve always been an admirer of Chomsky although I think I now mostly disagree with his ideas about language. I do remember being completely mesmerized by the few talks I attended when I was a graduate student.

Chomsky is the father of modern linguistics. He turned it into a subfield of computer science and mathematics. People still use Chomsky Normal Form and the Chomsky Hierarchy in computer science. Chomsky believes that the language ability is universal among all humans and is genetically encoded. He comes to this conclusion because in his mathematical analysis of language he found what he called “deep structures”, which are embedded rules that we are consciously unaware of when we use language. He was adamantly opposed to the idea that language could be acquired via a probabilistic machine learning algorithm. His most famous example is that we know that the sentence “Colorless green ideas sleep furiously” makes grammatical sense but is nonsensical while the sentence “Furiously sleep ideas green colorless”, is nongrammatical. Since, neither of these sentences had ever been spoken nor written he surmised that no statistical algorithm could ever learn the difference between the two. I think it is pretty clear now that Chomsky was incorrect and machine learning can learn to parse language and classify these sentences. There has also been field work that seems to indicate that there do exist languages in the Amazon that are qualitatively different form the universal set. It seems that the brain, rather than having an innate ability for grammar and language, may have an innate ability to detect and learn deep structure with a very small amount of data.

The host Joe Gelonesi, who has filled in admirably for the sadly departed Alan Saunders, asks Chomsky about the hard problem of consciousness near the end of the program. Chomsky, in his typical fashion of invoking 17th and 18th century philosophy, dismisses it by claiming that science itself and physics in particular has long dispensed with the equivalent notion. He says that the moment that Newton wrote down the equation for gravitational force, which requires action at a distance, physics stopped being about making the universe intelligible and became about creating predictive theories. He thus believes that we will eventually be able to create a theory of consciousness although it may not be intelligible to humans. He also seems to subscribe to panpsychism, where consciousness is a property of matter like mass, an idea championed by Christof Koch and Giulio Tononi. However, as I pointed out before, panpsychism is dualism. If it does exist, then it exists apart from the way we currently describe the universe. Lately, I’ve come to believe and accept the fact that consciousness is an epiphenomenon and has no causal consequence in the universe. I must credit David Chalmers (e.g. see previous post) for making it clear that this is the only recourse to dualism. We are no more nor less than automata caroming through the universe, with the ability to spectate a few tens of milliseconds after the fact.

Addendum: As pointed out in the comments, there are monoistic theories, as espoused by Bishop Berkeley, where only ideas are real.  My point about the only recourse to dualism is epiphenomena for consciousness, is if one adheres to materialism.

 

 

 

 

 

The nature of evil

In our current angst over terrorism and extremism, I think it is important to understand the motivation of the agents behind the evil acts if we are ever to remedy the situation. The observable element of evil (actus reus) is the harm done to innocent individuals. However, in order to prevent evil acts, we must understand the motivation behind the evil (mens rea). The Radiolab podcast “The Bad Show” gives an excellent survey of the possible varieties of evil. I will categorize evil into three types, each with increasing global impact. The first is the compulsion or desire within an individual to harm another. This is what motivates serial killers like the one described in the show. Generally, such evilness will be isolated and the impact will be limited albeit grisly. The second is related to what philosopher Hannah Arendt called “The Banality of Evil.” This is an evil where the goal of the agent is not to inflict harm per se as in the first case but in the process of pursuing some other goal, there is no attempt to avoid possible harm to others. This type of sociopathic evil is much more dangerous and widespread as is most recently seen in Volkswagen’s fraudulent attempt to pass emission standards. Although there are sociopathic individuals that really have no concern for others, I think many perpetrators in this category are swayed by cultural norms or pressures to conform. The third type of evil is when the perpetrator believes the act is not evil at all but a means to a just and noble end. This is the most pernicious form of evil because when it is done by “your side” it is not considered evil. For example, the dropping of atomic bombs on Japan was considered to be a necessary sacrifice of a few hundred thousand lives to end WWII and save many more lives.

I think it is important to understand that the current wave of terrorism and unrest in the Middle East is motivated by the third type. Young people are joining ISIS not because they particularly enjoy inflicting harm on others or they don’t care how their actions affect others, but because they are rallying to a cause they believe to be right and important. Many if not most suicide bombers come from middle class families and many are women. They are not merely motivated by a promise of a better afterlife or by a dire economic situation as I once believed. They are doing this because they believe in the cause and the feeling that they are part of something bigger than themselves. The same unwavering belief and hubris that led people to Australia fifty thousand years ago is probably what motivates ISIS today. They are not nihilists as many in the west believe. They have an entirely different value system and they view the west as being as evil as the west sees them. Until we fully acknowledge this we will not be able to end it.

The Drake equation and the Cambrian explosion

This summer billionaire Yuri Milner announced that he would spend upwards of 100 million dollars to search for extraterrestrial intelligent life (here is the New York Times article). This quest to see if we have company started about fifty years ago when Frank Drake pointed a radio telescope at some stars. To help estimate the number of possible civilizations, N, Drake wrote down his celebrated equation,

N = R_*f_p n_e f_l f_i f_c L

where R_* is the rate of star formation, f_p is the fraction of stars with planets, n_e is the average number of planets per star that could support life, f_l fraction of planets that develop life, f_i fraction of those planets that develop intelligent life, f_c fraction of civilizations that emit signals, and L is the length of time civilizations emit signals.

The past few years have demonstrated that planets in the galaxy are likely to be plentiful and although the technology to locate earth-like planets does not yet exist, my guess is that they will also be plentiful. So does that mean that it is just a matter of time before we find ET? I’m going to come on record here and say no. My guess is that life is rare and intelligent life may be so rare that there could only be one civilization at a time in any given galaxy.

While we are now filling in the numbers for the left side of Drake’s equation, we have absolutely no idea about the right side of the equation. However, I have good reason to believe that it is astronomically small and that reason is statistical independence. Although Drake characterized the probability of intelligent life into the probability of life forming times the probability it goes on to develop extra-planetary communication capability, there are actually a lot of factors in between. One striking example is the probability of the formation of multi-cellular life. In earth’s history, for the better part of three and a half billion years we had mostly single cellular life and maybe a smattering of multicellular experiments. Then suddenly about half a billion years ago, we had the Cambrian Explosion where multicellular animal life from which we are descended suddenly came onto the scene. This implies that forming multicellular life is extremely difficult and it is easy to envision an earth where it never formed at all.

We can continue. If it weren’t for an asteroid impact, the dinosaurs may never have gone extinct and mammals may not have developed. Even more recently, there seem to have been many species of advanced primates yet only one invented radios. Agriculture only developed ten thousand years ago, which meant that modern humans took about a hundred thousand years to discover it and only in one place. I think it is equally plausible that humans could have gone extinct like all of our other australopithecus and homo cousins. Life in the sea has existed much longer than life on land and there is no technologically advanced sea creature although I do think octopuses, dolphins and whales are intelligent.

We have around 100 billion stars in the galaxy and let’s just say that each has a habitable planet. Well, if the probability of each stage of life is one in a billion and if we need say three stages to attain technology then the probability of finding ET is one in 10^{16}. I would say that this is an optimistic estimate. Probabilities get small really quickly when you multiply them together. The probability of single cellular life will be much higher. It is possible that there could be hundred planets in our galaxy that have life but the chance that one of those is within a hundred light years will again be very low. However, I do think it is a worthwhile exercise to look for extracellular life, especially for oxygen or other life emitting gases in the atmosphere of exoplanets. It could tell us a lot about biology on earth.

2015-10-1: I corrected a factor of 10 error in some of the numbers.

The philosophy of Thomas the Tank Engine

My toddler loves to watch the television show Thomas and Friends based on the The Railway Series books by the Rev. Wilbert Audry. The show tells the story of sentient trains on a mythical island off the British coast called Sodor. Each episode is a morality play where one of the trains causes some problem because of a character flaw like arrogance or vanity that eventually comes to the attention of the avuncular head of the railroad, Sr. Topham Hatt (called The Fat Controller in the UK). He mildly chastises the train, who becomes aware of his foolishness (it’s almost always a he) and remedies the situation.

While I think the show has some educational value for small children, it also brings up some interesting ethical and metaphysical questions that could be very relevant for our near future. For one, although the trains are sentient and seem to have full control over their actions, some of them also have human drivers. What are these drivers doing? Are they simply observers or are they complicit in the ill-judged actions of the trains? Should they be held responsible for the mistakes of the train? Who has true control, the driver or the train? Can one over-ride the other? These questions will be on everyone’s minds when the first self-driving cars hit the mass market in a few years.

An even more relevant ethical dilemma regards the place the trains have in society. Are they employees or indentured servants of the railroad company? Are they free to leave the railroad if they want? Do they own possessions? When the trains break down they are taken to the steam works, which is run by a train named Victor. However, humans effect the repairs. Do they take orders from Victor? Presumably, the humans get paid and are free to change jobs so is this a situation where free beings are supervised by slaves?

The highest praise a train can receive from Sir Topham Hatt is that he or she was “very useful.” This is not something one would say to a human employee in a modern corporation. You might say you were very helpful or that your action was very useful but it sounds dehumanizing to say “you are useful.” Thus, Sir Topham Hatt at least, does not seem to consider the trains to be humans. Perhaps, he considers them to be more like domesticated animals. However, these are animals that clearly have aspirations, goals, and feelings of self-worth. It seems to me that they should be afforded the full rights of any other citizen of Sodor. As machines become more and more integrated into our lives, it may well be useful to probe the philosophical quandaries of Thomas and Friends.

 

 

 

 

Sebastian Seung and the Connectome

The New York Times Magazine has a nice profile on theoretical neuroscientist Sebastian Seung this week. I’ve known Sebastian since we were graduate students in Boston in the 1980’s. We were both physicists then and both ended up in biology though through completely different paths. The article focuses on his quest to map all the connections in the brain, which he terms the connectome. Near the end of the article, neuroscientist Eve Marder of Brandeis comments on the endeavor with the pithy remark that “If we want to understand the brain, the connectome is absolutely necessary and completely insufficient.”  To which the article ends with

Seung agrees but has never seen that as an argument for abandoning the enterprise. Science progresses when its practitioners find answers — this is the way of glory — but also when they make something that future generations rely on, even if they take it for granted. That, for Seung, would be more than good enough. “Necessary,” he said, “is still a pretty strong word, right?”

Personally, I am not sure if the connectome is necessary or sufficient although I do believe it is a worthy task. However, my hesitation is not because of what was proposed in the article, which is that we exist in a fluid world and the connectome is static. Rather, like Sebastian, I do believe that memories are stored in the connectome and I do believe that “your” connectome does capture much of the essence of “you”. Many years ago, the CPU on my computer died. Our IT person swapped out the CPU and when I turned my computer back on, it was like nothing had happened. This made me realize that everything about the computer that was important to me was stored on the hard drive. The CPU didn’t matter even though every thing a computer did relied on the CPU. I think the connectome is like the hard drive and trying to figure out how the brain works from it is like trying to reverse engineer the CPU from the hard drive. You can certainly get clues from it such as information is stored in binary form but I’m not sure if it is necessary or sufficient to figure out how a computer works by recreating an entire hard drive. Likewise, someday we may use the connectome to recover lost memories or treat some diseases but we may not need it to understand how a brain works.

Linear and nonlinear thinking

A linear system is one where the whole is precisely the sum of its parts. You can know how different parts will act together by simply knowing how they act in isolation. A nonlinear function lacks this nice property. For example, consider a linear function f(x). It satisfies the property that f(a x + b y) = a f(x) + b f(y). The function of the sum is the sum of the functions. One important point to note is that what is considered to be the paragon of linearity, namely a line on a graph, i.e. f(x) = mx + b is not linear since f(x + y) = m (x + y) + b \ne f(x)+ f(y). The y-intercept b destroys the linearity of the line. A line is instead affine, which is to say a linear function shifted by a constant. A linear differential equation has the form

\frac{dx}{dt} = M x

where x can be in any dimension.  Solutions of a linear differential equation can be multiplied by any constant and added together.

Linearity is thus essential for engineering. If you are designing a bridge then you simply add as many struts as you need to support the predicted load. Electronic circuit design is also linear in the sense that you combine as many logic circuits as you need to achieve your end. Imagine if bridge mechanics were completely nonlinear so that you had no way to predict how a bunch of struts would behave when assembled together. You would then have to test each combination to see how they work. Now, real bridges are not entirely linear but the deviations from pure linearity are mild enough that you can make predictions or have rules of thumb of what will work and what will not.

Chemistry is an example of a system that is highly nonlinear. You can’t know how a compound will act just based on the properties of its components. For example, you can’t simply mix glass and steel together to get a strong and hard transparent material. You need to be clever in coming up with something like gorilla glass used in iPhones. This is why engineering new drugs is so hard. Although organic chemistry is quite sophisticated in its ability to synthesize various compounds there is no systematic way to generate molecules of a given shape or potency. We really don’t know how molecules will behave until we create them. Hence, what is usually done in drug discovery is to screen a large number of molecules against specific targets and hope. I was at a computer-aided drug design Gordon conference a few years ago and you could cut the despair and angst with a knife.

That is not to say that engineering is completely hopeless for nonlinear systems. Most nonlinear systems act linearly if you perturb them gently enough. That is why linear regression is so useful and prevalent. Hence, even though the global climate system is a highly nonlinear system, it probably acts close to linear for small changes. Thus I feel confident that we can predict the increase in temperature for a 5% or 10% change in the concentration of greenhouse gases but much less confident in what will happen if we double or treble them. How linear a system will act depends on how close they are to a critical or bifurcation point. If the climate is very far from a bifurcation then it could act linearly over a large range but if we’re near a bifurcation then who knows what will happen if we cross it.

I think biology is an example of a nonlinear system with a wide linear range. Recent research has found that many complex traits and diseases like height and type 2 diabetes depend on a large number of linearly acting genes (see here). Their genetic effects are additive. Any nonlinear interactions they have with other genes (i.e. epistasis) are tiny. That is not to say that there are no nonlinear interactions between genes. It only suggests that common variations are mostly linear. This makes sense from an engineering and evolutionary perspective. It is hard to do either in a highly nonlinear regime. You need some predictability if you make a small change. If changing an allele had completely different effects depending on what other genes were present then natural selection would be hard pressed to act on it.

However, you also can’t have a perfectly linear system because you can’t make complex things. An exclusive OR logic circuit cannot be constructed without a threshold nonlinearity. Hence, biology and engineering must involve “the linear combination of nonlinear gadgets”. A bridge is the linear combination of highly nonlinear steel struts and cables. A computer is the linear combination of nonlinear logic gates. This occurs at all scales as well. In biology, you have nonlinear molecules forming a linear genetic code. Two nonlinear mitochondria may combine mostly linearly in a cell and two liver cells may combine mostly linearly in a liver.  This effective linearity is why organisms can have a wide range of scales. A mouse liver is thousands of times smaller than a human one but their functions are mostly the same. You also don’t need very many nonlinear gadgets to have extreme complexity. The genes between organisms can be mostly conserved while the phenotypes are widely divergent.