I just returned from an excellent meeting in Marseille. I was quite impressed by the quality of talks, both in content and exposition. My talk may have been the least effective in that it provoked no questions. Although I don’t think it was a bad talk per se, I did fail to connect with the audience. I kind of made the classic mistake of not knowing my audience. My talk was about how to extend a previous formalism that much of the audience was unfamiliar with. Hence, they had no idea why it was interesting or useful. The workshop was on mean field methods in neuroscience and my talk was on how to make finite size corrections to classical mean field results. The problem is that many of the participants of the workshop don’t use or know these methods. The field has basically moved on.

In the classical view, the mean field limit is one where the discreteness of the system has been averaged away and thus there are no fluctuations or correlations. I have been struggling over the past decade trying to figure out how to estimate finite system size corrections to mean field. This led to my work on the Kuramoto model with Eric Hildebrand and particularly Michael Buice. Michael and I have now extended the method to synaptically coupled neuron models. However, to this audience, mean field pertains more to what is known as the “balanced state”. This is the idea put forth by Carl van Vreeswijk and Haim Sompolinsky to explain why the brain seems so noisy. In classical mean field theory, the interactions are scaled by the number of neurons N so in the limit of N going to infinity the effect of any single neuron on the population is zero. Thus, there are no fluctuations or correlations. However in the balanced state the interactions are scaled by the square root of the number of neurons so in the mean field limit the fluctuations do not disappear. The brilliant stroke of insight by Carl and Haim was that a self consistent solution to such a situation is where the excitatory and inhibitory neurons balance exactly so the net mean activity in the network is zero but the fluctuations are not. In some sense, this is the inverse of the classical notion. Maybe it should have been called “variance field theory”. The nice thing about the balanced state is that it is a stable fixed point and no further tuning of parameters is required. Of course the scaling choice is still a form of tuning but it is not detailed tuning.

Hence, to the younger generation of theorists in the audience, mean field theory already has fluctuations. Finite size corrections don’t seem that important. It may actually indicate the success of the field because in the past most computational neuroscientists were trained in either physics or mathematics and mean field theory would have the meaning it has in statistical mechanics. The current generation has been completely trained in computational neuroscience with it’s own canon of common knowledge. I should say that my talk wasn’t a complete failure. It did seem to stir up interest in learning the field theory methods we have developed as people did recognize it provides a very useful tool to solve the problems they are interested in.

Addendum 2011-11-11

Here are some links to previous posts that pertain to the comments above.

https://sciencehouse.wordpress.com/2009/06/03/talk-at-njit/

https://sciencehouse.wordpress.com/2009/03/22/path-integral-methods-for-stochastic-equations/

https://sciencehouse.wordpress.com/2009/01/17/kinetic-theory-of-coupled-oscillators/

https://sciencehouse.wordpress.com/2010/09/30/path-integral-methods-for-sdes/

https://sciencehouse.wordpress.com/2010/02/03/paper-now-in-print/

https://sciencehouse.wordpress.com/2009/02/27/systematic-fluctuation-expansion-for-neural-networks/