Beyond mean field theory for neural networks

Michael Buice, Carson Chow

10^{11} neurons

10^{15} connections

Need to pick a

10^{11} neurons

 battleground

How do you get complex behavior (e.g. thinking) from the collective action of simple elements (e.g. point neurons)?

Function vs Mechanism

How does the brain do X ?

e.g. learning, memory, classification

How is X generated in the brain?
e.g. oscillations, synchrony, persistent activity

Neuron

Neuron

$$
\begin{gathered}
C \frac{d V}{d t}=-\sum_{r=1}^{n} g_{r}\left(x_{r}\right)\left(V-v_{r}\right) \\
\tau_{r} \frac{d x_{r}}{d t}=f(x, V)-x_{r}
\end{gathered}
$$

Neuron

$$
\begin{gathered}
C \frac{d V}{d t}=-\sum_{r=1}^{n} g_{r}\left(x_{r}\right)\left(V-v_{r}\right) \\
\tau_{r} \frac{d x_{r}}{d t}=f(x, V)-x_{r}
\end{gathered}
$$

Network

$$
C \frac{d V}{d t}=-\sum_{r=1}^{n} g_{r}\left(x_{r}\right)\left(V-v_{r}\right)
$$

$$
\tau_{r} \frac{d x_{r}}{d t}=f(x, V)-x_{r}
$$

Network

$$
C \frac{d V}{d t}=-\sum_{r=1}^{n} g_{r}\left(x_{r}\right)\left(V-v_{r}\right)
$$

$$
\tau_{r} \frac{d x_{r}}{d t}=f(x, V)-x_{r}
$$

$$
C \frac{d V_{i}}{d t}=-\sum_{r=1}^{n} g_{r}\left(x_{i}^{r}\right)\left(V_{i}-v_{r}\right)+\sum_{j=i}^{N} g_{i j} s_{j}(t)
$$

Network

$$
C \frac{d V}{d t}=-\sum_{r=1}^{n} g_{r}\left(x_{r}\right)\left(V-v_{r}\right)
$$

$$
\tau_{r} \frac{d x_{r}}{d t}=f(x, V)-x_{r}
$$

$$
C \frac{d V_{i}}{d t}=-\sum_{r=1}^{n} g_{r}\left(x_{i}^{r}\right)\left(V_{i}-v_{r}\right)+\sum_{j=i}^{N} g_{i j} s_{j}(t)
$$

Network

$$
C \frac{d V}{d t}=-\sum_{r=1}^{n} g_{r}\left(x_{r}\right)\left(V-v_{r}\right)
$$

$$
\tau_{r} \frac{d x_{r}}{d t}=f(x, V)-x_{r}
$$

$$
C \frac{d V_{i}}{d t}=-\sum_{r=1}^{n} g_{r}\left(x_{i}^{r}\right)\left(V_{i}-v_{r}\right)+\sum_{j=i}^{N} g_{i j} s_{j}(t)
$$

Really hard

Microscopic \rightarrow Macroscopic

Microscopic \rightarrow Macroscopic

Microscopic \rightarrow Macroscopic

mean field theory

Microscopic \rightarrow Macroscopic

mean field theory

Microscopic \rightarrow Macroscopic

Activity equation Wilson-Cowan equation

$$
\dot{a}_{i}(t)=-\alpha a_{i}(t)+f\left(\sum_{j} w_{i j} a_{j}(t)+I_{i}\right)
$$

Activity equation Wilson-Cowan equation

Activity equation Wilson-Cowan equation

$$
\dot{a}_{i}(t)=-\alpha a_{i}(t)+f\left(\sum_{j} w_{i j} a_{j}(t)+I_{i}\right)
$$

Activity equation Wilson-Cowan equation

rate constant

$$
\searrow_{\dot{a}_{i}(t)=-\alpha a_{i}(t)+f\left(\sum_{j} w_{i j} a_{j}(t)+I_{i}\right)}
$$

Activity equation Wilson-Cowan equation

$$
\dot{a}_{i}(t)=-\alpha a_{i}(t)+f\left(\sum_{j} w_{i j} a_{j}(t)+I_{i}\right)
$$

Activity equation Wilson-Cowan equation

$$
\dot{a}_{i}(t)=-\alpha a_{i}(t)+\underset{\uparrow}{f}\left(\sum_{j} w_{i j} a_{j}(t)+I_{i}\right)
$$

gain function

Activity equation Wilson-Cowan equation

$$
\dot{a}_{i}(t)=-\alpha a_{i}(t)+f\left(\sum_{j} w_{i j} a_{j}(t)+I_{i}\right)
$$

Activity equation Wilson-Cowan equation

connection weights

$$
\dot{a}_{i}(t)=-\alpha a_{i}(t)+f\left(\sum_{j} w_{i j} a_{j}(t)+I_{i}\right)
$$

Activity equation Wilson-Cowan equation

$$
\dot{a}_{i}(t)=-\alpha a_{i}(t)+f\left(\sum_{j} w_{i j} a_{j}(t)+I_{i}\right)
$$

Activity equation Wilson-Cowan equation

$$
\dot{a}_{i}(t)=-\alpha a_{i}(t)+f\left(\sum_{j} w_{i j} a_{j}(t)+I_{i}\right)
$$

Activity equation Wilson-Cowan equation

$$
\dot{a}_{i}(t)=-\alpha a_{i}(t)+f\left(\sum_{j} w_{i j} a_{j}(t)+I_{i}\right)
$$

Activity equation Wilson-Cowan equation

$$
\dot{a}_{i}(t)=-\alpha a_{i}(t)+f\left(\sum_{j} w_{i j} a_{j}(t)+I_{i}\right)
$$

purely phenomenological
Want to derive from neurons

Brain as a map from inputs I to outputs a

Brain as a map from inputs I to outputs a

Brain as a map from inputs I to outputs a

Example learning rules

$\tau \dot{w}_{i j}=a_{i} a_{j}-w_{i j}$
Hebbian rule

Example learning rules

$\tau \dot{w}_{i j}=a_{i} a_{j}-w_{i j}$
$\tau \dot{w}_{i j}=C_{i j}-w_{i j}$

Hebbian rule

Correlation rule

Example learning rules

$\tau \dot{w}_{i j}=a_{i} a_{j}-w_{i j}$
$\tau \dot{w}_{i j}=C_{i j}-w_{i j}$

Hebbian rule

Correlation rule
but activity equations ignore correlations

Correlations

Poisson

Synchronized

time

"Generalized" activity equations

$$
\begin{aligned}
& \dot{a}_{i}(t)=-\alpha a_{i}(t)+f\left(\sum_{j} w_{i j} a_{j}(t)+I_{i}\right)+G\left[C_{i j}\right] \\
& \dot{C}_{i j}(t)=\psi\left[C_{i j}, a_{i}, a_{j}\right]
\end{aligned}
$$

Compute $C_{i j}$ from neurons

Neuron phase models

Neuron phase models

$$
\frac{d v}{d t}=I+v^{2} \quad \xrightarrow{v=\tan (\theta / 2)} \quad \frac{d \theta}{d t}=1-\cos \theta+I(1+\cos \theta)
$$

Neuron phase models

$$
\frac{d v}{d t}=I+v^{2} \quad \longrightarrow \quad \frac{d \theta}{d t}=1-\cos \theta+I(1+\cos \theta)
$$

Quadratic integrate-and-fire

Neuron phase models

$$
\frac{d v}{d t}=I+v^{2}
$$

$$
\longrightarrow \quad \frac{d \theta}{d t}=1-\cos \theta+I(1+\cos \theta)
$$

$$
v=\tan (\theta / 2)
$$

Quadratic
Theta model

Neuron phase models

$$
\frac{d v}{d t}=I+v^{2}
$$

$$
\longrightarrow \quad \frac{d \theta}{d t}=1-\cos \theta+I(1+\cos \theta)
$$

$$
v=\tan (\theta / 2)
$$

Quadratic
Theta model
integrate-and-fire
$\underset{\text { model }}{\text { Simple phase }} \quad \frac{d \theta}{d t}=I$

Neuron model with coupling

$$
\begin{gathered}
\dot{\theta}_{i}=f_{i}(\theta)+\alpha_{i} u(t) \\
\dot{u}_{i}+\beta u_{i}=\frac{\beta}{N} \sum_{j} w_{i j} \delta\left(t-t_{j}^{s}\right)
\end{gathered}
$$

Neuron model with coupling

$$
\begin{aligned}
& \dot{\theta}_{i}=f_{i}(\theta)+\alpha_{i} u(t) \\
& \dot{u}_{i}+\beta u_{i}=\frac{\beta}{N} \sum_{j} w_{i j} \delta\left(t-t_{j}^{s}\right) \\
& \text { spike times of neuron } j
\end{aligned}
$$

Neuron model with coupling

$$
\begin{gathered}
\dot{\theta}_{i}=f_{i}(\theta)+\alpha_{i} u(t) \\
\dot{u}_{i}+\beta u_{i}=\frac{\beta}{N} \sum_{j} w_{i j} \delta\left(t-t_{j}^{s}\right)
\end{gathered}
$$

spike times of neuron j

Global coupling: $w_{\mathrm{ij}}=$ const

Correlations from finite size effects

Correlations from finite size effects

$$
C\left(t, t^{\prime}\right)=\left\langle(u(t)-\bar{u})\left(u\left(t^{\prime}\right)-\bar{u}\right)\right\rangle
$$

Correlations from finite size effects

$$
C\left(t, t^{\prime}\right)=\left\langle(u(t)-\bar{u})\left(u\left(t^{\prime}\right)-\bar{u}\right)\right\rangle
$$

Correlations from finite size effects

$$
C\left(t, t^{\prime}\right)=\left\langle(u(t)-\bar{u})\left(u\left(t^{\prime}\right)-\bar{u}\right)\right\rangle
$$

Kinetic theory

Joule

Boltzmann

Kinetic theory

Derive macroscopic equations from microscopic dynamics

Kinetic theory

Derive macroscopic equations from microscopic dynamics

microscopic \rightarrow probabilistic \rightarrow activity

Probability density evolution in N dimensions

Probability density evolution in N dimensions

Probability density evolution in N dimensions

Different initial data,
 parameters

Probability density evolution in N dimensions

Different initial data,
 parameters

Probability density evolution in N dimensions

Different initial data, parameters

Probability density evolution in N dimensions

Different initial data,

Liouville formalism

$$
\dot{\theta_{i}}=f_{i}(\vec{\theta}, t) \quad \vec{\theta}=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{N}\right\}
$$

Liouville formalism

$$
\dot{\theta}_{i}=f_{i}(\vec{\theta}, t) \quad \vec{\theta}=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{N}\right\}
$$

Probability conservation

Liouville formalism

$$
\dot{\theta}_{i}=f_{i}(\vec{\theta}, t) \quad \vec{\theta}=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{N}\right\}
$$

Probability conservation

$$
\frac{\partial P_{N}(\vec{\theta})}{\partial t}=-\frac{\partial}{\partial \theta_{i}} f_{i} P_{N}(\vec{\theta})
$$

Liouville formalism

$$
\dot{\theta}_{i}=f_{i}(\vec{\theta}, t) \quad \vec{\theta}=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{N}\right\}
$$

Probability conservation

$$
\frac{\partial P_{N}(\vec{\theta})}{\partial t}=-\frac{\partial}{\partial \theta_{i}} f_{i} P_{N}(\vec{\theta})
$$

(Einstein summation convention)

Marginalize

Marginalize

$$
P_{k}\left(\theta_{1}, \cdots, \theta_{k}\right)=\int \prod_{i=k+1}^{N} d \theta_{i} P_{N}(\vec{\theta})
$$

Marginalize

$$
P_{k}\left(\theta_{1}, \cdots, \theta_{k}\right)=\int \prod_{i=k+1}^{N} d \theta_{i} P_{N}(\vec{\theta})
$$

Exchangeability

Marginalize

$$
P_{k}\left(\theta_{1}, \cdots, \theta_{k}\right)=\int \prod_{i=k+1}^{N} d \theta_{i} P_{N}(\vec{\theta})
$$

Exchangeability

$$
P_{N}\left(\cdots, \theta_{i}, \cdots, \theta_{j}, \cdots\right)
$$

Marginalize

$$
P_{k}\left(\theta_{1}, \cdots, \theta_{k}\right)=\int \prod_{i=k+1}^{N} d \theta_{i} P_{N}(\vec{\theta})
$$

Exchangeability

$$
P_{N}\left(\cdots, \theta_{i}, \cdots, \theta_{j}, \cdots\right)
$$

Marginalize

$$
P_{k}\left(\theta_{1}, \cdots, \theta_{k}\right)=\int \prod_{i=k+1}^{N} d \theta_{i} P_{N}(\vec{\theta})
$$

Exchangeability

$$
P_{N}\left(\cdots, \theta_{i}, \cdots, \theta_{j}, \cdots\right)
$$

$$
P_{1}\left(\theta_{1}\right)=P_{1}\left(\theta_{2}\right)=\cdots=P_{1}(\theta)
$$

$$
\frac{\partial P_{N}(\vec{\theta})}{\partial t}=-\frac{\partial}{\partial \theta_{i}} f_{i}(\vec{\theta}) P_{N}(\vec{\theta})
$$

$$
\int \prod_{i=2}^{N} d \theta_{i} \frac{\partial P_{N}(\vec{\theta})}{\partial t}=-\frac{\partial}{\partial \theta_{i}} f_{i}(\vec{\theta}) P_{N}(\vec{\theta})
$$

$$
\int \prod_{i=2}^{N} d \theta_{i} \frac{\partial P_{N}(\vec{\theta})}{\partial t}=-\frac{\partial}{\partial \theta_{i}} f_{i}(\vec{\theta}) P_{N}(\vec{\theta})
$$

For pairwise interactions, e.g. $\quad f_{i}(\vec{\theta})=\sum_{j=1}^{N} f\left(\theta_{i}, \theta_{j}\right)$

$$
\int \prod_{i=2}^{N} d \theta_{i} \frac{\partial P_{N}(\vec{\theta})}{\partial t}=-\frac{\partial}{\partial \theta_{i}} f_{i}(\vec{\theta}) P_{N}(\vec{\theta})
$$

For pairwise interactions, e.g. $\quad f_{i}(\vec{\theta})=\sum_{j=1}^{N} f\left(\theta_{i}, \theta_{j}\right)$

$$
\frac{\partial P_{1}(\theta)}{\partial t}=-N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f\left(\theta, \theta^{\prime}\right) P_{2}\left(\theta, \theta^{\prime}\right)
$$

$$
P_{2}\left(\theta, \theta^{\prime}\right)=P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)+\frac{1}{N} C_{2}\left(\theta, \theta^{\prime}\right)
$$

$$
P_{2}\left(\theta, \theta^{\prime}\right)=P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)+\frac{1}{N} C_{2}\left(\theta, \theta^{\prime}\right)
$$

$$
\frac{\partial P_{1}(\theta)}{\partial t}+N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f\left(\theta, \theta^{\prime}\right) P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)=-\frac{\partial}{\partial \theta} \int d \theta^{\prime} f\left(\theta, \theta^{\prime}\right) C_{2}\left(\theta, \theta^{\prime}\right)
$$

$$
\begin{aligned}
& P_{2}\left(\theta, \theta^{\prime}\right)=P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)+\frac{1}{N} C_{2}\left(\theta, \theta^{\prime}\right) \\
& \frac{\partial P_{1}(\theta)}{\partial t}+N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f\left(\theta, \theta^{\prime}\right) P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)=-\frac{\partial}{\partial \theta} \int d \theta^{\prime} f\left(\theta, \theta^{\prime}\right) C_{2}\left(\theta, \theta^{\prime}\right)
\end{aligned}
$$

Finite size effects

$$
\begin{aligned}
& P_{2}\left(\theta, \theta^{\prime}\right)=P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)+\frac{1}{N} C_{2}\left(\theta, \theta^{\prime}\right) \\
& \frac{\partial P_{1}(\theta)}{\partial t}+N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f\left(\theta, \theta^{\prime}\right) P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)=-\frac{\partial}{\partial \theta} \int d \theta^{\prime} f\left(\theta, \theta^{\prime}\right) C_{2}\left(\theta, \theta^{\prime}\right)
\end{aligned}
$$

Finite size effects
$\frac{\partial P_{1}(\theta)}{\partial t}+N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f\left(\theta, \theta^{\prime}\right) P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)=0$
Mean field theory

$$
\begin{aligned}
& P_{2}\left(\theta, \theta^{\prime}\right)=P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)+\frac{1}{N} C_{2}\left(\theta, \theta^{\prime}\right) \\
& \frac{\partial P_{1}(\theta)}{\partial t}+N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f\left(\theta, \theta^{\prime}\right) P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)=-\frac{\partial}{\partial \theta} \int d \theta^{\prime} f\left(\theta, \theta^{\prime}\right) C_{2}\left(\theta, \theta^{\prime}\right)
\end{aligned}
$$

Finite size effects
$\frac{\partial P_{1}(\theta)}{\partial t}+N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f\left(\theta, \theta^{\prime}\right) P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)=0$
Mean field theory Vlasov equation

BBGKY Hierarchy

$$
\frac{\partial P_{1}(\theta)}{\partial t}+N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f_{i}\left(\theta, \theta^{\prime}\right) P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)=-N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f_{i}\left(\theta, \theta^{\prime}\right) C_{2}\left(\theta, \theta^{\prime}\right)
$$

BBGKY Hierarchy

$$
\frac{\partial P_{1}(\theta)}{\partial t}+N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f_{i}\left(\theta, \theta^{\prime}\right) P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)=-N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f_{i}\left(\theta, \theta^{\prime}\right) C_{2}\left(\theta, \theta^{\prime}\right)
$$

C_{2} depends on C_{3} and so on

BBGKY Hierarchy

$$
\frac{\partial P_{1}(\theta)}{\partial t}+N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f_{i}\left(\theta, \theta^{\prime}\right) P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)=-N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f_{i}\left(\theta, \theta^{\prime}\right) C_{2}\left(\theta, \theta^{\prime}\right)
$$

C_{2} depends on C_{3} and so on
N coupled PDEs

BBGKY Hierarchy

$$
\frac{\partial P_{1}(\theta)}{\partial t}+N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f_{i}\left(\theta, \theta^{\prime}\right) P_{1}\left(\theta^{\prime}\right) P_{1}(\theta)=-N \frac{\partial}{\partial \theta} \int d \theta^{\prime} f_{i}\left(\theta, \theta^{\prime}\right) C_{2}\left(\theta, \theta^{\prime}\right)
$$

C_{2} depends on C_{3} and so on
N coupled PDEs
Need to truncate

Exploiting exchangeability

$$
P_{N}\left(\ldots, \theta_{i}, \ldots, \theta_{j}, \ldots\right)=P_{N}\left(\ldots, \theta_{j}, \ldots, \theta_{i}, \ldots\right)
$$

Neuron identity is unimportant

Exploiting exchangeability

$$
P_{N}\left(\ldots, \theta_{i}, \ldots, \theta_{j}, \ldots\right)=P_{N}\left(\ldots, \theta_{j}, \ldots, \theta_{i}, \ldots\right)
$$

Neuron identity is unimportant

density

$$
\eta(\theta, u, t)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(\theta-\theta_{i}(t)\right)
$$

Apply to phase neuron model

Neuron dynamics:

$$
\dot{\theta}=I(t)+\alpha u(t)
$$

Apply to phase neuron model

Neuron dynamics:

$$
\dot{\theta}=I(t)+\alpha u(t)
$$

Synaptic dynamics:

Apply to phase neuron model

Neuron dynamics:

$$
\dot{\theta}=I(t)+\alpha u(t)
$$

Synaptic dynamics:
$\dot{u}+\beta u=\beta \nu$

Apply to phase neuron model

Neuron dynamics: $\dot{\theta}=I(t)+\alpha u(t)$

Synaptic dynamics: $\dot{u}+\beta u=\beta \nu$

Firing rate:

Apply to phase neuron model

Neuron dynamics:

$$
\dot{\theta}=I(t)+\alpha u(t)
$$

Synaptic dynamics:

$$
\dot{u}+\beta u=\beta \nu
$$

Firing rate:

$$
\nu=\frac{\beta}{N} \sum_{j} \delta\left(t-t_{j}^{s}\right)
$$

Firing rate: $\quad \nu=\frac{\beta}{N} \sum_{j} \delta\left(t-t_{j}^{s}\right)$ density:

$$
\eta(\theta, u, t)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(\theta-\theta_{i}(t)\right)
$$

Firing rate: $\quad \nu=\frac{\beta}{N} \sum_{j} \delta\left(t-t_{j}^{s}\right)$

$$
\begin{aligned}
& \text { density: } \quad \eta(\theta, u, t)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(\theta-\theta_{i}(t)\right) \\
& \delta\left(t-t_{j}^{s}\right)=\dot{\theta} \delta(\pi-\theta(t))
\end{aligned}
$$

Firing rate: $\quad \nu=\frac{\beta}{N} \sum_{j} \delta\left(t-t_{j}^{s}\right)$
density: $\quad \eta(\theta, u, t)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(\theta-\theta_{i}(t)\right)$

$$
\delta\left(t-t_{j}^{s}\right)=\dot{\theta} \delta(\pi-\theta(t))
$$

$$
\nu(t)=\frac{1}{N} \sum_{i} \dot{\theta}_{i}(t) \delta\left(\pi-\theta_{i}(t)\right)=(I(t)+\alpha u(t)) \eta(\pi, t)
$$

Klimontovich formalism

e.g. Hildebrand, Buice, Chow, PRL 98.054IOI, 2007

Complete description of system

$$
\begin{aligned}
& \partial_{t} \eta+\partial_{\theta}[(I(t)+\alpha u(t)) \eta]=0 \\
& \dot{u}+\beta u=\beta \nu \\
& \nu(t)=(I(t)+\alpha u(t)) \eta(\pi, t)
\end{aligned}
$$

Klimontovich formalism

e.g. Hildebrand, Buice, Chow, PRL 98.054IOI, 2007

Complete description of system
$\partial_{t} \eta+\partial_{\theta}[(I(t)+\alpha u(t)) \eta]=0$
$\dot{u}+\beta u=\beta \nu$
$\nu(t)=(I(t)+\alpha u(t)) \eta(\pi, t)$
but η is not differentiable

Average over initial data

smooth by averaging

Average over initial data

smooth by averaging

Average over initial data

smooth by averaging

Average over initial data

smooth by averaging

Average over initial data

smooth by averaging

Average over initial data

smooth by averaging

Average over initial data

Average over initial data

smooth by
averaging

Average over initial data

smooth by averaging

θ

$$
\rho(\theta, t)=\langle\eta(\theta, t)\rangle
$$

Average over initial data

smooth by averaging

$$
\begin{aligned}
& \rho(\theta, t)=\langle\eta(\theta, t)\rangle \\
& u_{0}=\langle u\rangle
\end{aligned}
$$

Average over initial data

$$
\dot{u}(t)=-\beta u(t)+\beta[I(t) \eta+\alpha u \eta]
$$

Average over initial data

$$
\langle\dot{u}(t)=-\beta u(t)+\beta[I(t) \eta+\alpha u \eta]\rangle
$$

Average over initial data

$$
\dot{u}_{0}(t)=-\beta u_{0}(t)+\beta[I(t) \rho+\alpha\langle u \eta\rangle]
$$

Average over initial data

$$
\dot{u}_{0}(t)=-\beta u_{0}(t)+\beta[I(t) \rho+\alpha\langle u \eta\rangle]
$$

$$
\partial_{t} \eta+\partial_{\theta}[I(t) \eta+\alpha u \eta]=0
$$

Average over initial data

$$
\dot{u}_{0}(t)=-\beta u_{0}(t)+\beta[I(t) \rho+\alpha\langle u \eta\rangle]
$$

$$
\left\langle\partial_{t} \eta+\partial_{\theta}[I(t) \eta+\alpha u \eta]=0\right\rangle
$$

Average over initial data

$$
\dot{u}_{0}(t)=-\beta u_{0}(t)+\beta[I(t) \rho+\alpha\langle u \eta\rangle]
$$

$$
\partial_{t} \rho+\partial_{\theta}[I(t) \rho+\alpha\langle u \eta\rangle]=0
$$

Average over initial data

$$
\dot{u}_{0}(t)=-\beta u_{0}(t)+\beta[I(t) \rho+\alpha\langle u \eta\rangle]
$$

$$
\partial_{t} \rho+\partial_{\theta}[I(t) \rho+\alpha\langle u \eta\rangle]=0
$$

$$
\left(\partial_{t} u(t)+\beta u(t)-\beta[I(t) \eta+\alpha u \eta]\right)=0
$$

Average over initial data

$$
\dot{u}_{0}(t)=-\beta u_{0}(t)+\beta[I(t) \rho+\alpha\langle u \eta\rangle]
$$

$$
\partial_{t} \rho+\partial_{\theta}[I(t) \rho+\alpha\langle u \eta\rangle]=0
$$

$$
\eta\left(\partial_{t} u(t)+\beta u(t)-\beta[I(t) \eta+\alpha u \eta]\right)=0
$$

Average over initial data

$$
\dot{u}_{0}(t)=-\beta u_{0}(t)+\beta[I(t) \rho+\alpha\langle u \eta\rangle]
$$

$$
\partial_{t} \rho+\partial_{\theta}[I(t) \rho+\alpha\langle u \eta\rangle]=0
$$

$$
\left\langle\eta\left(\partial_{t} u(t)+\beta u(t)-\beta[I(t) \eta+\alpha u \eta]\right)=0\right\rangle
$$

Average over initial data

$$
\begin{gathered}
\dot{u}_{0}(t)=-\beta u_{0}(t)+\beta[I(t) \rho+\alpha\langle u \eta\rangle] \\
\partial_{t} \rho+\partial_{\theta}[I(t) \rho+\alpha\langle u \eta\rangle]=0 \\
\left\langle\eta \left(\partial_{t} u(t)+\beta u(t)-\beta\left[I(t) \eta+\begin{array}{c}
\alpha u \eta])=0\rangle \\
\langle\eta u \eta\rangle
\end{array}\right.\right.\right.
\end{gathered}
$$

Average over initial data

$$
\begin{gathered}
\dot{u}_{0}(t)=-\beta u_{0}(t)+\beta[I(t) \rho+\alpha\langle u \eta\rangle] \\
\partial_{t} \rho+\partial_{\theta}[I(t) \rho+\alpha\langle u \eta\rangle]=0 \\
\left\langle\eta\left(\partial_{t} u(t)+\beta u(t)-\beta[I(t) \eta+\alpha u \eta]\right)=0\right\rangle \\
\langle\eta u \eta\rangle
\end{gathered}
$$

Average over initial data

$$
\begin{gathered}
\dot{u}_{0}(t)=-\beta u_{0}(t)+\beta[I(t) \rho+\alpha\langle u \eta\rangle] \\
\partial_{t} \rho+\partial_{\theta}[I(t) \rho+\alpha\langle u \eta\rangle]=0 \\
\left\langle\eta\left(\partial_{t} u(t)+\beta u(t)-\beta[I(t) \eta+\alpha u \eta]\right)=0\right\rangle \\
\langle\eta u \eta\rangle
\end{gathered}
$$

BBGKY moment hierarchy

Average over initial data

$$
\begin{gathered}
\dot{u}_{0}(t)=-\beta u_{0}(t)+\beta[I(t) \rho+\alpha\langle u \eta\rangle\rangle \\
\partial_{t} \rho+\partial_{\theta}[I(t) \rho+\alpha\langle u \eta\rangle]=0 \\
\left\langle\eta\left(\partial_{t} u(t)+\beta u(t)-\beta[I(t) \eta+\alpha u \eta]\right)=0\right\rangle \\
\langle\eta u \eta\rangle
\end{gathered}
$$

BBGKY moment hierarchy

$$
\langle u \eta\rangle=u_{0} \rho+\frac{1}{N} C_{u v}
$$

$$
\langle u \eta\rangle=u_{0} \rho+\frac{1}{\nu} \not \subset u v
$$

$$
\langle u \eta\rangle=u_{0} \rho+\frac{\searrow}{\nu} \not \subset u v
$$

Ignore correlations

Mean field theory

$$
\langle u \eta\rangle=u_{0} \rho+\frac{\searrow}{\nu} \not \subset u v
$$

Ignore correlations

Mean field theory

$$
\begin{gathered}
\dot{u}_{0}(t)=-\beta u_{0}(t)+\beta \nu(t) \\
\nu(t)=\left(I(t)+\alpha u_{0}(t)\right) \rho(\pi, t) \\
\partial_{t} \rho+\partial_{\theta}\left[\left(I(t)+\alpha u_{0}(t)\right) \rho\right]=0
\end{gathered}
$$

Mean field theory

$$
\begin{gathered}
\dot{u}_{0}(t)=-\beta u_{0}(t)+\beta \nu(t) \\
\nu(t)=\left(I(t)+\alpha u_{0}(t)\right) \rho(\pi, t) \\
\partial_{t} \rho+\partial_{\theta}\left[\left(I(t)+\alpha u_{0}(t)\right) \rho\right]=0
\end{gathered}
$$

Previous work went straight to mean field theory
e.g. Desai and Zwanzig, I978; Strogatz and Mirollo, 1990; Treves 1993; Abbott and Van Vreeswijk, 1993; ...

Steady state

$$
\begin{aligned}
\dot{u}=-\beta u+\beta(I+\alpha u) \rho(\pi, t) & =0 \\
\partial_{t} \rho=-\partial_{\theta}[(I(t)+\alpha u(t)) \rho] & =0
\end{aligned}
$$

Steady state

$$
\begin{aligned}
& \dot{u}=-\beta u+\beta(I+\alpha u) \rho(\pi, t)=0 \\
& \partial_{t} \rho=-\partial_{\theta}[(I(t)+\alpha u(t)) \rho] \quad=0 \\
& \bar{\rho}=\frac{1}{2 \pi} \quad \quad \bar{u}=\frac{I}{2 \pi}\left(1-\frac{\alpha}{2 \pi}\right)^{-1}
\end{aligned}
$$

Steady state

$$
\begin{aligned}
& \dot{u}=-\beta u+\beta(I+\alpha u) \rho(\pi, t)=0 \\
& \partial_{t} \rho=-\partial_{\theta}[(I(t)+\alpha u(t)) \rho] \quad=0 \\
& \bar{\rho}=\frac{1}{2 \pi} \quad \bar{u}=\frac{I}{2 \pi}\left(1-\frac{\alpha}{2 \pi}\right)^{-1} \\
& \nu=(I+\alpha \bar{u}) \bar{\rho}=\bar{u}
\end{aligned}
$$

Activity equation

$$
\begin{aligned}
& \dot{u}+\beta u=\beta(I+\alpha u) \rho(\pi, t) \\
& \left.\partial_{t} \rho+\partial_{\theta}(I+\alpha u(t)) \rho(\theta, t)\right)=\rho_{0}(\theta) \delta(t)
\end{aligned}
$$

Activity equation

$$
\begin{gathered}
\dot{u}+\beta u=\beta(I+\alpha u) \rho(\pi, t) \\
\left.\partial_{t} \rho+\partial_{\theta}(I+\alpha u(t)) \rho(\theta, t)\right)=\rho_{0}(\theta) \delta(t) \\
\dot{u}+\beta u=\beta(I+\alpha u) \rho_{0}\left(\pi-I t-\alpha \int_{0}^{t} u(s) d s\right)
\end{gathered}
$$

Activity equation

$$
\begin{gathered}
\dot{u}+\beta u=\beta(I+\alpha u) \rho(\pi, t) \\
\left.\partial_{t} \rho+\partial_{\theta}(I+\alpha u(t)) \rho(\theta, t)\right)=\rho_{0}(\theta) \delta(t) \\
\dot{u}+\beta u=\beta(I+\alpha u) \rho_{0}\left(\pi-I t-\alpha \int_{0}^{t} u(s) d s\right) \\
\text { If } \rho_{0}=\frac{1}{2 \pi}
\end{gathered}
$$

Activity equation

$$
\begin{gathered}
\dot{u}+\beta u=\beta(I+\alpha u) \rho(\pi, t) \\
\left.\partial_{t} \rho+\partial_{\theta}(I+\alpha u(t)) \rho(\theta, t)\right)=\rho_{0}(\theta) \delta(t) \\
\dot{u}+\beta u= \\
\text { If } \rho_{0}=\frac{1}{2 \pi}
\end{gathered}
$$

Activity equation

$$
\begin{array}{r}
\dot{u}+\beta u=\beta(I+\alpha u) \rho(\pi, t) \\
\left.\partial_{t} \rho+\partial_{\theta}(I+\alpha u(t)) \rho(\theta, t)\right)=\rho_{0}(\theta) \delta(t) \\
\dot{u}+\beta u=F(I+\alpha u) \quad F(x)=\frac{\beta}{2 \pi} x \\
\text { If } \rho_{0}=\frac{1}{2 \pi}
\end{array}
$$

Activity equation

$$
\dot{u}+\beta u=\beta(I+\alpha u) \rho(\pi, t)
$$

$$
\left.\partial_{t} \rho+\partial_{\theta}(I+\alpha u(t)) \rho(\theta, t)\right)=\rho_{0}(\theta) \delta(t)
$$

$$
\dot{u}+\beta u=F(I+\alpha u)
$$

$$
F(x)=\frac{\beta}{2 \pi} x
$$

Wilson-Cowan equation If $\rho_{0}=\frac{1}{2 \pi}$

Beyond mean field theory

Need a scheme to compute moments of η

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

Density functional

e.g. Buice and Chow, PRE, 76.03। I I 8, 2007

Liouville

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

Liouville

Density functional

e.g. Buice and Chow, PRE, 76.031 I I8, 2007

Liouville

Density functional

e.g. Buice and Chow, PRE, 76.031 I I8, 2007

Liouville

Density functional

e.g. Buice and Chow, PRE, 76.031। I 8,2007

Liouville

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

Liouville

Klimontovich

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

Liouville

Klimontovich

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

Liouville

θ_{1}

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

Liouville

θ_{1}

Klimontovich

θ

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

Liouville
θ_{N}
θ_{1}

Klimontovich

θ

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

Liouville

θ_{1}

Klimontovich

θ

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

Liouville

θ_{1}

Klimontovich

θ

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

Liouville

θ_{1}

Klimontovich

θ

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

Liouville

θ_{1}

Klimontovich

θ

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I 8, 2007

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

Ensemble of initial data

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I 8, 2007

Ensemble of initial data

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I 8, 2007

Ensemble of initial data \Rightarrow Ensemble of systems

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I 8, 2007

Ensemble of initial data

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I 8, 2007

Ensemble of initial data \Rightarrow Density of densities

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

$$
\begin{aligned}
\partial_{t} \eta+\partial_{\theta}[(I(t)+\alpha u(t)) \eta] & =0 \\
\dot{u}+\beta u-\beta(I+\alpha u) \eta(\pi, t) & =0
\end{aligned}
$$

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I 8, 2007

$$
\begin{aligned}
& \partial_{t} \eta+\partial_{\theta}[(I(t)+\alpha u(t)) \eta]=0 \\
& \dot{u}+\beta u-\beta(I+\alpha u) \eta(\pi, t)=0 \\
& \eta\left(\theta, t_{0}\right)=\eta_{0}(\theta)
\end{aligned}
$$

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I 8, 2007

$$
\begin{aligned}
& \partial_{t} \eta+\partial_{\theta}[(I(t)+\alpha u(t)) \eta]=0 \\
& \dot{u}+\beta u-\beta(I+\alpha u) \eta(\pi, t)=0 \\
& \eta\left(\theta, t_{0}\right)=\eta_{0}(\theta) \quad u\left(t_{0}\right)=u_{0}
\end{aligned}
$$

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

$$
\left.\begin{array}{l}
\partial_{t} \eta+\partial_{\theta}[(I(t)+\alpha u(t)) \eta]=0 \\
\dot{u}+\beta u-\beta(I+\alpha u) \eta(\pi, t)=0 \\
\eta\left(\theta, t_{0}\right)=\eta_{0}(\theta) \quad u\left(t_{0}\right)=u_{0}
\end{array}\right\}
$$

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I 8, 2007

$$
\left.\begin{array}{l}
\partial_{t} \eta+\partial_{\theta}[(I(t)+\alpha u(t)) \eta]=0 \\
\dot{u}+\beta u-\beta(I+\alpha u) \eta(\pi, t)=0 \\
\eta\left(\theta, t_{0}\right)=\eta_{0}(\theta) \quad u\left(t_{0}\right)=u_{0}
\end{array}\right\} \quad \mathcal{L}\left(u, \eta \mid u_{0}, \eta_{0}\right)=0
$$

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I 8, 2007

$$
\left.\begin{array}{c}
\partial_{t} \eta+\partial_{\theta}[(I(t)+\alpha u(t)) \eta]=0 \\
\dot{u}+\beta u-\beta(I+\alpha u) \eta(\pi, t)=0 \\
\eta\left(\theta, t_{0}\right)=\eta_{0}(\theta) \quad u\left(t_{0}\right)=u_{0}
\end{array}\right\} \quad \mathcal{L}\left(u, \eta \mid u_{0}, \eta_{0}\right)=0
$$

Density functional

e.g. Buice and Chow, PRE, 76.03 I I I8, 2007

$$
\left.\begin{array}{c}
\partial_{t} \eta+\partial_{\theta}[(I(t)+\alpha u(t)) \eta]=0 \\
\dot{u}+\beta u-\beta(I+\alpha u) \eta(\pi, t)=0 \\
\eta\left(\theta, t_{0}\right)=\eta_{0}(\theta) \quad u\left(t_{0}\right)=u_{0}
\end{array}\right\} \quad \mathcal{L}\left(u, \eta \mid u_{0}, \eta_{0}\right)=0
$$

$$
P\left[u, \eta \mid u_{0}, \eta_{0}\right] \propto \delta[\mathcal{L}]
$$

Density of the density

$$
P\left[u, \eta \mid u_{0}, \eta_{0}\right]
$$

$\underline{\square} \quad u, \eta$

uncertainty in initial data

$$
P[u, \eta]=\int \mathcal{D} u_{0} \mathcal{D} \eta_{0} P\left[u, \eta \mid u_{0}, \eta_{0}\right] P\left[u_{0}, \eta_{0}\right]
$$

$$
\begin{aligned}
\delta(x) & =\int e^{i k x} d k \\
P[u, \eta] & =\delta[\mathcal{L}] \propto \int \mathcal{D} \tilde{u} \mathcal{D} \tilde{\eta} e^{-S[u, \tilde{u}, \eta, \tilde{\eta}]}
\end{aligned}
$$

$$
\begin{aligned}
\delta(x) & =\int e^{i k x} d k \\
P[u, \eta] & =\delta[\mathcal{L}] \propto \int \mathcal{D} \tilde{u} \mathcal{D} \tilde{\eta} e^{-S[u, \tilde{u}, \eta, \tilde{\eta}]}
\end{aligned}
$$

$$
\begin{aligned}
\delta(x) & =\int e^{i k x} d k \\
P[u, \eta] & =\delta[\mathcal{L}] \propto \int \mathcal{D} \tilde{u} \mathcal{D} \tilde{\eta} e^{-S[u, \tilde{u}, \eta, \tilde{\eta}]}
\end{aligned}
$$

Path or functional integral

$$
\begin{aligned}
\delta(x) & =\int e^{i k x} d k \\
P[u, \eta] & =\delta[\mathcal{L}] \propto \int \mathcal{D} \tilde{u} \mathcal{D} \tilde{\eta} e^{-S[u, \tilde{u}, \eta, \tilde{\eta}]}
\end{aligned}
$$

Path or functional integral

$$
\begin{aligned}
& S[u, \tilde{u}, \eta, \tilde{\eta}]=N \int d t d \theta \tilde{\eta}(\theta, t)\left(\partial_{t} \eta+\partial_{\theta}[(I+\alpha u) \eta]\right) \\
& \quad+\int d t \tilde{u}(\dot{u}+\beta u-\beta[I+\alpha u] \eta(\pi, t))
\end{aligned}
$$

$$
\begin{aligned}
\delta(x) & =\int e^{i k x} d k \\
P[u, \eta] & =\delta[\mathcal{L}] \propto \int \mathcal{D} \tilde{u} \mathcal{D} \tilde{\eta} e^{-S[u, \tilde{u}, \eta, \tilde{\eta}]}
\end{aligned}
$$

Path or functional integral

$$
\begin{gathered}
S[u, \tilde{u}, \eta, \tilde{\eta}]=N \int d t d \theta \tilde{\eta}(\theta, t)\left(\partial_{t} \eta+\partial_{\theta}[(I+\alpha u) \eta]\right) \\
+\int d t \tilde{u}\left(\dot{u}+\beta u \not \varlimsup_{\text {response variable }}[I+\alpha u] \eta(\pi, t)\right)
\end{gathered}
$$

"Nonlinear Cole-Hopf Transform" $\eta \rightarrow \psi$

$$
\begin{aligned}
& S[u, \tilde{u}, \psi, \tilde{\psi}]=N \int d t d \theta \tilde{\psi}(\theta, t)\left(\partial_{t} \psi+\partial_{\theta}[(I+\alpha u) \psi]\right) \\
& +\int d t \tilde{u}(\dot{u}+\beta u-\beta[I+\alpha u][\tilde{\psi}(\pi, t) \psi(\pi, t)+\psi(\pi, t)])
\end{aligned}
$$

"Nonlinear Cole-Hopf Transform" $\eta \rightarrow \psi$

$$
\begin{aligned}
& S[u, \tilde{u}, \psi, \tilde{\psi}]=N \int d t d \theta \tilde{\psi}(\theta, t)\left(\partial_{t} \psi+\partial_{\theta}[(I+\alpha u) \psi]\right) \\
& +\int d t \tilde{u}(\dot{u}+\beta u-\beta[I+\alpha u][\tilde{\psi}(\pi, t) \psi(\pi, t)+\psi(\pi, t)])
\end{aligned}
$$

Initial data
$-\ln Z_{0}$
"Nonlinear Cole-Hopf Transform" $\eta \rightarrow \psi$

$$
\begin{aligned}
& S[u, \tilde{u}, \psi, \tilde{\psi}]=N \int d t d \theta \tilde{\psi}(\theta, t)\left(\partial_{t} \psi+\partial_{\theta}[(I+\alpha u) \psi]\right) \\
& +\int d t \tilde{u}(\dot{u}+\beta u-\beta[I+\alpha u][\tilde{\psi}(\pi, t) \psi(\pi, t)+\psi(\pi, t)])
\end{aligned}
$$

Initial data

$$
S=N\left(\frac{1}{2} \tilde{v} \Delta^{-1} v+\text { nonlinear terms }\right)
$$

"Nonlinear Cole-Hopf Transform" $\eta \rightarrow \psi$

$$
\begin{aligned}
& S[u, \tilde{u}, \psi, \tilde{\psi}]=N \int d t d \theta \tilde{\psi}(\theta, t)\left(\partial_{t} \psi+\partial_{\theta}[(I+\alpha u) \psi]\right) \\
& +\int d t \tilde{u}(\dot{u}+\beta u-\beta[I+\alpha u][\tilde{\psi}(\pi, t) \psi(\pi, t)+\psi(\pi, t)])
\end{aligned}
$$

Initial data
$S=N\left(\frac{1}{2} \tilde{v} \Delta^{-1} v+\right.$ nonlinear terms $)$
$\int \mathcal{D} \tilde{v} \mathcal{D} v\left(v^{n} \tilde{v}^{m}\right) e^{-S[v, \tilde{v}]}$
"Nonlinear Cole-Hopf Transform" $\eta \rightarrow \psi$

$$
\begin{array}{cc}
S[u, \tilde{u}, \psi, \tilde{\psi}]=N \int d t d \theta \tilde{\psi}(\theta, t)\left(\partial_{t} \psi+\partial_{\theta}[(I+\alpha u) \psi]\right) & \text { Initial data } \\
+\int d t \tilde{u}(\dot{u}+\beta u-\beta[I+\alpha u][\tilde{\psi}(\pi, t) \psi(\pi, t)+\psi(\pi, t)]) & -\ln Z_{0}
\end{array}
$$

$$
S=N\left(\frac{1}{2} \tilde{v} \Delta^{-1} v+\text { nonlinear terms }\right)
$$

$\int \mathcal{D} \tilde{v} \mathcal{D} v\left(v^{n} \tilde{v}^{m}\right) e^{-S[v, \tilde{v}]}$
Laplace's method in $1 / N$
"Nonlinear Cole-Hopf Transform" $\eta \rightarrow \psi$

$$
\begin{array}{cc}
S[u, \tilde{u}, \psi, \tilde{\psi}]=N \int d t d \theta \tilde{\psi}(\theta, t)\left(\partial_{t} \psi+\partial_{\theta}[(I+\alpha u) \psi]\right) & \text { Initial data } \\
+\int d t \tilde{u}(\dot{u}+\beta u-\beta[I+\alpha u][\tilde{\psi}(\pi, t) \psi(\pi, t)+\psi(\pi, t)]) & -\ln Z_{0}
\end{array}
$$

$$
S=N\left(\frac{1}{2} \overparen{\left.\Delta^{-1} v+\text { nonlinear terms }\right)}\right.
$$

$\int \mathcal{D} \tilde{v} \mathcal{D} v\left(v^{n} \tilde{v}^{m}\right) e^{-S[v, \tilde{v}]} \quad$ Laplace's method in $1 / N$

Linear Response

$$
\begin{aligned}
\left(\frac{d}{d t}+\beta\right) \Delta_{u}^{u}-\beta \rho(\pi, t) \Delta_{u}^{u}-\beta(I+\alpha \bar{u}) \Delta_{\psi}^{u} & =\delta\left(t-t^{\prime}\right) \\
\left(\frac{d}{d t}+\beta\right) \Delta_{u}^{\psi}-\beta \rho(\pi, t) \Delta_{u}^{\psi}-\beta(I+\alpha \bar{u}) \Delta_{\psi}^{\psi} & =0 \\
\partial_{t} \Delta_{\psi}^{u}+\partial_{\theta}\left[(I+\alpha \bar{u}) \Delta_{\psi}^{u}\right]+\partial_{\theta} \rho \Delta_{u}^{u} & =0 \\
\partial_{t} \Delta_{\psi}^{\psi}+\partial_{\theta}\left[(I+\alpha \bar{u}) \Delta_{\psi}^{\psi}\right]+\partial_{\theta} \rho \Delta_{u}^{\psi} & =\frac{1}{N} \delta\left(\theta-\theta^{\prime}\right) \delta\left(t-t^{\prime}\right)
\end{aligned}
$$

Linear Response

Linear Response

$$
\begin{aligned}
& \left\langle\delta u(t) \delta u\left(t^{\prime}\right)\right\rangle \\
& \delta u=u-\bar{u}
\end{aligned}
$$

Linear Response

$$
\begin{aligned}
& \left\langle\delta u(t) \delta u\left(t^{\prime}\right)\right\rangle= \\
& \delta u=u-\bar{u}
\end{aligned}
$$

Steady state

$$
\begin{aligned}
& \dot{u}=-\beta u+\beta(I+\alpha u) \rho(\pi, t)=0 \\
& \partial_{t} \rho=-\partial_{\theta}[(I(t)+\alpha u(t)) \rho] \quad=0 \\
& \bar{\rho}=\frac{1}{2 \pi} \quad \bar{u}=\frac{I}{2 \pi}\left(1-\frac{\alpha}{2 \pi}\right)^{-1} \\
& \nu=(I+\alpha \bar{u}) \bar{\rho}=\bar{u}
\end{aligned}
$$

Drive Correlations

$$
\left\langle\delta u(t) \delta u\left(t^{\prime}\right)\right\rangle \quad \delta u=u-\bar{u}
$$

Drive Correlations

$$
\left\langle\delta u(t) \delta u\left(t^{\prime}\right)\right\rangle \quad \delta u=u-\bar{u}
$$

Drive Correlations

$$
\left\langle\delta u(t) \delta u\left(t^{\prime}\right)\right\rangle \quad \delta u=u-\bar{u}
$$

$$
\begin{aligned}
& =\beta \int d t^{\prime \prime}\left(I+\alpha \bar{u}\left(t^{\prime \prime}\right)\right) \Delta_{u}^{u}\left(t, t^{\prime \prime}\right) \Delta_{u}^{\psi}\left(t^{\prime}, \pi, t^{\prime \prime}\right) \rho\left(\pi, \alpha, t^{\prime \prime}\right)+\left(t \leftrightarrow t^{\prime}\right) \\
& -\frac{N}{(2 \pi)^{2}} \int d \theta \Delta_{u}^{\psi}(t, s) \int d \theta^{\prime} \Delta_{u}^{\psi}\left(t^{\prime}, s^{\prime}\right)+O\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

Drive Correlations

Drive Correlations

$$
\begin{aligned}
\left\langle\delta u(t)^{2}\right\rangle= & \frac{1}{N} \sum_{k=0}^{\infty}\left(1-\frac{1}{2} \delta_{k, 0}\right) \frac{\beta^{2}}{\pi \delta}\left(I+\alpha \bar{u}_{0}\right) \\
& \times e^{-\beta \delta \Delta t_{k}}\left[1-e^{-2 \beta \delta\left(t-t_{0}-\Delta t_{k}\right)}\right] H\left(t-t_{0}-\Delta t_{k}\right) \\
& -\frac{1}{N} \bar{u}_{0}^{2}\left(1-e^{-\beta \delta\left(t-t_{0}\right)}\right)^{2}
\end{aligned}
$$

Correlation transients

$$
C(t)=\left\langle u(t)^{2}\right\rangle-\langle u(t)\rangle^{2} \propto \frac{1}{N}
$$

Correlation asymptotic state

Correlation asymptotic state

Firing rate fluctuations

$$
\begin{gathered}
\nu(t)=(I(t)+\alpha u(t)) \eta(\pi, t) \\
\langle\nu(t)\rangle=(I(t)+\alpha u(t)) \bar{\rho}=\bar{u}
\end{gathered}
$$

$$
\left\langle(\nu(t)-\bar{u})\left(\nu\left(t^{\prime}\right)-\bar{u}\right)\right\rangle
$$

Firing rate fluctuations

$$
\begin{gathered}
\nu(t)=(I(t)+\alpha u(t)) \eta(\pi, t) \\
\langle\nu(t)\rangle=(I(t)+\alpha u(t)) \bar{\rho}=\bar{u}
\end{gathered}
$$

$$
\left\langle(\nu(t)-\bar{u})\left(\nu\left(t^{\prime}\right)-\bar{u}\right)\right\rangle=
$$

Firing rate fluctuations

$$
\begin{gathered}
\nu(t)=(I(t)+\alpha u(t)) \eta(\pi, t) \\
\langle\nu(t)\rangle=(I(t)+\alpha u(t)) \bar{\rho}=\bar{u}
\end{gathered}
$$

$$
\left\langle(\nu(t)-\bar{u})\left(\nu\left(t^{\prime}\right)-\bar{u}\right)\right\rangle=
$$

Firing rate fluctuations

$$
\begin{gathered}
\nu(t)=(I(t)+\alpha u(t)) \eta(\pi, t) \\
\langle\nu(t)\rangle=(I(t)+\alpha u(t)) \bar{\rho}=\bar{u}
\end{gathered}
$$

$$
\left\langle(\nu(t)-\bar{u})\left(\nu\left(t^{\prime}\right)-\bar{u}\right)\right\rangle=
$$

$$
=(I+\alpha \bar{u})^{2}\left\langle\eta(\pi, t) \eta\left(\pi, t^{\prime}\right)\right\rangle
$$

Firing rate fluctuations

$$
\begin{gathered}
\nu(t)=(I(t)+\alpha u(t)) \eta(\pi, t) \\
\langle\nu(t)\rangle=(I(t)+\alpha u(t)) \bar{\rho}=\bar{u}
\end{gathered}
$$

$$
\left\langle(\nu(t)-\bar{u})\left(\nu\left(t^{\prime}\right)-\bar{u}\right)\right\rangle=(I+\alpha \bar{u})^{2}\left\langle\eta(\pi, t) \eta\left(\pi, t^{\prime}\right)\right\rangle
$$

Firing rate fluctuations

$$
\begin{gathered}
\nu(t)=(I(t)+\alpha u(t)) \eta(\pi, t) \\
\langle\nu(t)\rangle=(I(t)+\alpha u(t)) \bar{\rho}=\bar{u}
\end{gathered}
$$

$$
\left\langle(\nu(t)-\bar{u})\left(\nu\left(t^{\prime}\right)-\bar{u}\right)\right\rangle=(I+\alpha \bar{u})^{2}\left\langle\eta(\pi, t) \eta\left(\pi, t^{\prime}\right)\right\rangle
$$

Firing rate fluctuations

$$
\begin{gathered}
\nu(t)=(I(t)+\alpha u(t)) \eta(\pi, t) \\
\langle\nu(t)\rangle=(I(t)+\alpha u(t)) \bar{\rho}=\bar{u}
\end{gathered}
$$

$$
\begin{aligned}
\langle(\nu(t)-\bar{u}) & \left.\left(\nu\left(t^{\prime}\right)-\bar{u}\right)\right\rangle=(I+\alpha \bar{u})^{2}\left\langle\eta(\pi, t) \eta\left(\pi, t^{\prime}\right)\right\rangle \\
& =\quad \frac{\bar{u}}{N d t}
\end{aligned}
$$

Firing rate fluctuations

$$
\begin{gathered}
\nu(t)=(I(t)+\alpha u(t)) \eta(\pi, t) \\
\langle\nu(t)\rangle=(I(t)+\alpha u(t)) \bar{\rho}=\bar{u}
\end{gathered}
$$

$$
\begin{aligned}
\langle(\nu(t)-\bar{u}) & \left.\left(\nu\left(t^{\prime}\right)-\bar{u}\right)\right\rangle=(I+\alpha \bar{u})^{2}\left\langle\eta(\pi, t) \eta\left(\pi, t^{\prime}\right)\right\rangle \\
& =\quad \frac{\bar{u}}{N d t}
\end{aligned}
$$

Poisson behavior

Firing rate fluctuations

$$
\begin{gathered}
\nu(t)=(I(t)+\alpha u(t)) \eta(\pi, t) \\
\langle\nu(t)\rangle=(I(t)+\alpha u(t)) \bar{\rho}=\bar{u}
\end{gathered}
$$

$$
\left\langle(\nu(t)-\bar{u})\left(\nu\left(t^{\prime}\right)-\bar{u}\right)\right\rangle=(I+\alpha \bar{u})^{2}\left\langle\eta(\pi, t) \eta\left(\pi, t^{\prime}\right)\right\rangle
$$

$$
=\quad \frac{\bar{u}}{N d t}
$$

Poisson behavior

Firing rate fluctuations

$$
\begin{gathered}
\nu(t)=(I(t)+\alpha u(t)) \eta(\pi, t) \\
\langle\nu(t)\rangle=(I(t)+\alpha u(t)) \bar{\rho}=\bar{u}
\end{gathered}
$$

$$
\left\langle(\nu(t)-\bar{u})\left(\nu\left(t^{\prime}\right)-\bar{u}\right)\right\rangle=(I+\alpha \bar{u})^{2}\left\langle\eta(\pi, t) \eta\left(\pi, t^{\prime}\right)\right\rangle
$$

$$
=\quad \frac{\bar{u}}{N d t} \quad-\quad \frac{\bar{u}^{2}}{N}
$$

Poisson behavior

Firing rate fluctuations

$$
\begin{aligned}
& \nu(t)=(I(t)+\alpha u(t)) \eta(\pi, t) \\
& \langle\nu(t)\rangle=(I(t)+\alpha u(t)) \bar{\rho}=\bar{u}
\end{aligned}
$$

$$
\left\langle(\nu(t)-\bar{u})\left(\nu\left(t^{\prime}\right)-\bar{u}\right)\right\rangle \quad=(I+\alpha \bar{u})^{2}\left\langle\eta(\pi, t) \eta\left(\pi, t^{\prime}\right)\right\rangle
$$

$$
=\quad \frac{\bar{u}}{N d t} \quad-\quad \frac{\bar{u}^{2}}{N}
$$

Poisson behavior
sampling noise

Theta Model

$$
\begin{aligned}
& \dot{\theta}_{i}(t)=1-\cos \theta_{i}(t)+\left(I_{i}(t)+\alpha_{i} u(t)\right)\left(1+\cos \theta_{i}(t)\right) \\
& \dot{u}_{i}+\beta u_{i}=\frac{\beta}{N} \sum_{j} \delta\left(t-t_{j}^{s}\right)
\end{aligned}
$$

Theta Model

$$
\begin{aligned}
& \dot{\theta}_{i}(t)=1-\cos \theta_{i}(t)+\left(I_{i}(t)+\alpha_{i} u(t)\right)\left(1+\cos \theta_{i}(t)\right) \\
& \dot{u}_{i}+\beta u_{i}=\frac{\beta}{N} \sum_{j} \delta\left(t-t_{j}^{s}\right) \\
& S=S[\tilde{u}(t), u(t)]+S[\tilde{\varphi}(\theta, t), \varphi(\theta, t)]
\end{aligned}
$$

Theta Model

$$
\begin{gathered}
\dot{\theta}_{i}(t)=1-\cos \theta_{i}(t)+\left(I_{i}(t)+\alpha_{i} u(t)\right)\left(1+\cos \theta_{i}(t)\right) \\
\dot{u}_{i}+\beta u_{i}=\frac{\beta}{N} \sum_{j} \delta\left(t-t_{j}^{s}\right) \\
S=S[\tilde{u}(t), u(t)]+S[\tilde{\varphi}(\theta, t), \varphi(\theta, t)] \\
S[\varphi, \tilde{\varphi}]= \\
\quad N \int d t d \theta \tilde{\varphi}(\theta, t)\left[\partial_{t} \varphi(\theta, t)+\partial_{\theta}[1-\cos \theta\right. \\
\quad+(1+\cos \theta)\{I+\alpha u(t)\} \varphi(\theta, t)]]-\ln Z\left[\tilde{\varphi}_{0}\left(\theta, t_{0}\right)\right]
\end{gathered}
$$

Theta Model

$$
\begin{gathered}
\dot{\theta}_{i}(t)=1-\cos \theta_{i}(t)+\left(I_{i}(t)+\alpha_{i} u(t)\right)\left(1+\cos \theta_{i}(t)\right) \\
\dot{u}_{i}+\beta u_{i}=\frac{\beta}{N} \sum_{j} \delta\left(t-t_{j}^{s}\right) \\
S=S[\tilde{u}(t), u(t)]+S[\tilde{\varphi}(\theta, t), \varphi(\theta, t)] \\
S[\varphi, \tilde{\varphi}]=N \int d t d \theta \tilde{\varphi}(\theta, t)\left[\partial_{t} \varphi(\theta, t)+\partial_{\theta}[1-\cos \theta\right. \\
\\
\quad+(1+\cos \theta)\{I+\alpha u(t)\} \varphi(\theta, t)]]-\ln Z\left[\tilde{\varphi}_{0}\left(\theta, t_{0}\right)\right] \\
S[\tilde{u}(t), u(t)]=\int_{t_{0}}^{t} d s \tilde{u}(s)\left(\frac{d}{d s} u(s)+\beta u(s)\right. \\
-2 \beta\{\tilde{\varphi}(\pi, s) \varphi(\pi, s)+\varphi(\pi, s)\})-\ln Z\left[\tilde{u}\left(t_{0}\right)\right]
\end{gathered}
$$

Steady state

$$
\begin{aligned}
\rho_{0}(\theta) & =\frac{\sqrt{I+u_{0}}}{\pi\left(1-\cos \theta+\left(I+\alpha u_{0}\right)(1+\cos \theta)\right)} \\
u_{0} & =\sqrt{I+\alpha u_{0}} \\
\nu & =\frac{1}{\pi} \sqrt{I+\alpha u_{0}}
\end{aligned}
$$

Steady state

$$
\rho_{0}(\theta)=\frac{\sqrt{I+u_{0}}}{\pi\left(1-\cos \theta+\left(I+\alpha u_{0}\right)(1+\cos \theta)\right)}
$$

$$
u_{0}=\sqrt{I+\alpha u_{0}}
$$

ρ_{0}

$$
\nu=\frac{1}{\pi} \sqrt{I+\alpha u_{0}}
$$

$-\pi$
π

Firing rate fluctuations

$$
\langle\nu(t)\rangle=2 \rho(\pi, t)
$$

Firing rate fluctuations

$$
\begin{aligned}
\langle\nu(t)\rangle & =2 \rho(\pi, t) \\
\langle\nu(t)\rangle & =\int d \alpha d \Omega d \alpha^{\prime} d \Omega^{\prime}\left\langle\psi\left(x_{\pi}\right) \psi\left(x_{\pi}^{\prime}\right)\right\rangle+\frac{1}{N d t}\langle\nu(t)\rangle
\end{aligned}
$$

Firing rate fluctuations

$$
\begin{aligned}
\langle\nu(t)\rangle & =2 \rho(\pi, t) \\
\langle\nu(t)\rangle & =\int d \alpha d \Omega d \alpha^{\prime} d \Omega^{\prime}\left\langle\psi\left(x_{\pi}\right) \psi\left(x_{\pi}^{\prime}\right)\right\rangle+\frac{1}{N d t}\langle\nu(t)\rangle
\end{aligned}
$$

Firing rate fluctuations

$$
\begin{aligned}
\langle\nu(t)\rangle & =2 \rho(\pi, t) \\
\langle\nu(t)\rangle & =\int d \alpha d \Omega d \alpha^{\prime} d \Omega^{\prime}\left\langle\psi\left(x_{\pi}\right) \psi\left(x_{\pi}^{\prime}\right)\right\rangle+\frac{1}{N d t}\langle\nu(t)\rangle
\end{aligned}
$$

Anomalous finite size effects

Firing rate fluctuations

$$
\begin{aligned}
\langle\nu(t)\rangle & =2 \rho(\pi, t) \\
\langle\nu(t)\rangle & =\int d \alpha d \Omega d \alpha^{\prime} d \Omega^{\prime}\left\langle\psi\left(x_{\pi}\right) \psi\left(x_{\pi}^{\prime}\right)\right\rangle+\frac{1}{N d t}\langle\nu(t)\rangle
\end{aligned}
$$

Anomalous finite size effects
not in phase model

Simulations

Simulations

Simulations

$\mathrm{N}=10$

$N=10$

Slides on sciencehouse.wordpress.com

