The dynamics of obesity

Carson C Chow Laboratory of Biological Modeling, NIDDK, NIH

US obesity epidemic

Data from National Health and Nutrition Examination Survey (NHANES)

US obesity epidemic

US obesity epidemic

ΔStorage = Intake - Expenditure

Energy flux

Rate of storage = intake rate - expenditure rate

$$\frac{d(\rho_M M)}{dt} = I - E$$

M = body mass

Energy density ρ_M converts energy to mass

Energy density

Fat 37.7 kJ/g

Carbs (glycogen) 16.8 kJ/g

Protein 16.8 kJ/g

Water

Bone

Minerals

Multiple fuel sources

 $\frac{d(\rho_M M)}{dt} = I - E$

 $\rho_F \frac{dF}{dt}$ $\rho_G \frac{dG}{dt}$ $\rho_P \frac{dP}{dt}$

 $=I_F + I_C + I_P - E$

$$\rho_F \frac{dF}{dt} = I_F$$

$$\rho_G \frac{dG}{dt} = I_C - E$$

$$\rho_P \frac{dP}{dt} = I_P$$

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$

$$\rho_G \frac{dG}{dt} = I_C - f_C E$$

$$\rho_P \frac{dP}{dt} = I_P - (1 - f_F - f_C) E$$

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$

$$\rho_G \frac{dG}{dt} = I_C - f_C E$$

$$\rho_P \frac{dP}{dt} = I_P - (1 - f_F - f_C)E$$

$$f_F$$
 = fraction of fat utilized
 f_C = fraction of carbs utilized

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$

$$\rho_G \frac{dG}{dt} = I_C - f_C E$$

$$\rho_P \frac{dP}{dt} = I_P - (1 - f_F - f_C)E$$

$$f_F$$
 = fraction of fat utilized
 f_C = fraction of carbs utilized

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$

$$\rho_G \frac{dG}{dt} = I_C - f_C E$$

$$\rho_P \frac{dP}{dt} = I_P - (1 - f_F - f_C)E$$

$$f_F$$
 = fraction of fat utilized
 f_C = fraction of carbs utilized

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$

$$\rho_G \frac{dG}{dt} = I_C - f_C E$$

$$\rho_P \frac{dP}{dt} = I_P - (1 - f_F - f_C) E$$

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$

$$\rho_G \frac{dG}{dt} = I_C - f_C E = 0$$

$$\rho_P \frac{dP}{dt} = I_P - (1 - f_F - f_C)E$$

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$

$$f_C = \frac{I_C}{E}$$

$$\frac{dP}{E} = I_F - (1 - f_F - f_F)^2$$

$$\rho_P \frac{dI}{dt} = I_P - (1 - f_F - f_C)E$$

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$

$$\rho_P \frac{dP}{dt} = I_P - (1 - f_F - \frac{I_C}{E})E$$

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$

$$\rho_P \frac{dP}{dt} = I_P - (1 - f_F)E + I_C$$

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$

$$\rho_P \frac{dP}{dt} = I_P + I_C - (1 - f_F) E$$

Glycogen supply small, ~ fixed on long time scales

Monday, July 12, 2010

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$

$$\rho_P \frac{dP}{dt} = I_P + I_C - (1 - f_F)E$$

Divide mass into lean and fat M = L + F

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$

$$\rho_P \frac{dP}{dt} = I_P + I_C - (1 - f_F)E$$

Divide mass into lean and fat M = L + F

Change in *L* due to change $\frac{dP}{dt} = \frac{1}{1+h_P}\frac{dL}{dt}$

h_p protein hydration coefficient
Reduction to 2D

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$
$$\frac{\rho_P}{1 + h_P} \frac{dL}{dt} = I_P + I_C - (1 - f_F)E$$

Divide mass into lean and fat M = L + F

h_p protein hydration coefficient

Reduction to 2D

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$
$$\frac{\rho_P}{1 + h_P} \frac{dL}{dt} = I_P + I_C - (1 - f_F)E$$

Divide mass into lean and fat M = L + F

Lean intake = carbs + protein $I_P + I_C = I_L$

h_p protein hydration coefficient

Reduction to 2D

$$\rho_F \frac{dF}{dt} = I_F - f_F E$$

$$\frac{\rho_P}{1 + h_P} \frac{dL}{dt} = I_L - (1 - f_F)E$$

Divide mass into lean and fat M = L + F

h_p protein hydration coefficient

Body composition model

$$\rho_F \frac{dF}{dt} = I_F - fE$$

$$\rho_L \frac{dL}{dt} = I_L - (1 - f)E$$

Body composition model

$$\rho_F \frac{dF}{dt} = I_F - fE$$

$$\rho_L \frac{dL}{dt} = I_L - (1 - f)E$$

f is fraction of energy use that is fat

Body composition model

$$\rho_F \frac{dF}{dt} = I_F - fE$$

$$\rho_L \frac{dL}{dt} = I_L - (1 - f)E$$

f is fraction of energy use that is fat

E and *f* are functions of *F* and *L*

$$\rho_F \frac{dF}{dt} = I_F - fE$$

$$\rho_L \frac{dL}{dt} = I_L - (1 - f)E$$

$$\rho_F \frac{dF}{dt} = I_F - fE = 0$$

$$\rho_L \frac{dL}{dt} = I_L - (1 - f)E = 0$$

$$\rho_F \frac{dF}{dt} = I_F - fE = 0$$

$$\rho_L \frac{dL}{dt} = I_L - (1 - f)E = 0$$
Nullclines

$$\rho_F \frac{dF}{dt} = I_F - fE = 0$$

$$\left. \begin{cases} \rho_L \frac{dL}{dt} = I_L - (1-f)E = 0 \end{cases} \right\}$$
Nullclines

 $E(F,L) = I_F + I_L \equiv I$ energy balance

$$\rho_F \frac{dF}{dt} = I_F - fE = 0$$

$$\left. \begin{cases} \rho_L \frac{dL}{dt} = I_L - (1-f)E = 0 \end{cases} \right\}$$
Nullclines

$$E(F,L) = I_F + I_L \equiv I$$
 energy balance
 $f(F,L) = \frac{I_F}{I}$ macronutrient balance

Possible phase plane dynamics

Chow and Hall, PLoS Comp Bio,4: e1000045, 2008

E =

Basal metabolic rate (BMR)

Basal metabolic rate (BMR) Physical activity

+

Basal metabolic rate (BMR) Physical activity

+

E ~ **10** MJ/day

Basal metabolic rate (BMR) Physical activity

+

E ~ 10 MJ/day ~115 W

Basal metabolic rate (BMR) Physical activity

+

 $E \sim 10 \text{ MJ/day} \sim 115 \text{ W} \sim 3 \text{ KWH/day}$

Basal metabolic rate

Basal metabolic rate

e.g. BMR (MJ/day) = 0.9 L (kg) + 0.01 F (kg) + 1.1

Physical activity

Energy due to PA \propto Mass

$$E_{PA} = aM = a(L+F)$$

a ranges from 0 to 0.1 MJ/kg/day

Physical activity

Energy due to PA \propto Mass

$$E_{PA} = aM = a(L+F)$$

a ranges from *0* to *0.1 MJ/kg/day*

E is linear in *F* and *L*

Single fixed point is generic

Multi-stability or limit cycle requires fine tuning

Invariant manifold or line attractor requires special form

Invariant manifold or line attractor requires special form

The problem with measuring f

In energy balance, f reflects diet

The problem with measuring f

In energy balance, f reflects diet $f(F,L) = \frac{I_F}{I}$

The problem with measuring f

In energy balance, f reflects diet $f(F,L) = \frac{I_F}{I}$

Must invert in dynamic situation

$$\rho_F \frac{dF}{dt} = I_F - fE$$

$$\rho_L \frac{dL}{dt} = I_L - (1 - f)E$$

Forbes Law

Forbes Law

Impose Forbes law

$$\frac{dF}{dL} = \frac{F}{10.4}$$

$$\rho_F \, \frac{dF}{dt} = \left(I_F - fE \right)$$

$$\rho_L \, \frac{dL}{dt} = \left(I_L - (1 - f)E \right)$$

Impose Forbes law

$$\frac{dF}{dL} = \frac{F}{10.4}$$

$$dF = (I_F - fE) \frac{dt}{\rho_F}$$

$$\rho_L \, \frac{dL}{dt} = \left(I_L - (1-f)E \right)$$

Impose Forbes law

$$\frac{dF}{dL} = \frac{F}{10.4}$$

$$dF = (I_F - fE)\frac{dt}{\rho_F}$$

$$dL = (I_L - (1 - f)E) \frac{dt}{\rho_L}$$
$$\frac{dF}{dL} = \frac{F}{10.4}$$

$$\frac{dF}{dL} = \frac{(I_F - fE)\rho_L}{(I_L - (1 - f)E)\rho_F}$$

$$\frac{(I_F - fE)\rho_L}{(I_L - (1 - f)E)\rho_F} = \frac{F}{10.4}$$

$$\frac{(I_F - fE)\rho_L}{(I_L - (1 - f)E)\rho_F} = \frac{F}{10.4}$$

$$f = \frac{I_F - (1 - p)(I - E)}{E} \qquad p = \frac{1}{1 + \frac{\rho_F}{\rho_L} \frac{F}{10.4}}$$

Monday, July 12, 2010

$$\frac{(I_F - fE)\rho_L}{(I_L - (1 - f)E)\rho_F} = \frac{F}{10.4}$$

$$f = \frac{I_F - (1 - p)(I - E)}{E} \qquad p = \frac{1}{1 + \frac{\rho_F}{\rho_L} \frac{F}{10.4}}$$

Matches data

Hall, Bain, and Chow, Int J. Obesity, (2007)

$$\rho_F \frac{dF}{dt} = I_F - fE$$

$$\rho_L \frac{dL}{dt} = I_L - (1 - f)E$$

$$f = \frac{I_F - (1-p)(I-E)}{E}$$

$$\rho_F \frac{dF}{dt} = I_F - \frac{I_F - (1-p)(I-E)E}{E}$$
$$\rho_L \frac{dL}{dt} = I_L - (1-f)E$$

$$\rho_F \frac{dF}{dt} = I_F - I_F + (1-p)(I-E)$$

$$\rho_L \frac{dL}{dt} = I_L - (1 - f)E$$

$$\rho_F \frac{dF}{dt} = (1-p)(I-E)$$

$$\rho_L \frac{dL}{dt} = I_L - (1 - f)E$$

$$\rho_F \frac{dF}{dt} = (1-p)(I-E)$$

$$\rho_L \frac{dL}{dt} = p(I - E)$$

$$\rho_F \frac{dF}{dt} = (1-p)(I-E)$$

$$\rho_L \frac{dL}{dt} = p(I - E)$$

Steady state is line attractor E(F, L) = I

$$\rho_F \frac{dF}{dt} = (1-p)(I-E) \qquad \qquad p = \frac{1}{1 + \frac{\rho_F}{\rho_L} \frac{F}{10.4}}$$
$$\rho_L \frac{dL}{dt} = p(I-E)$$

Steady state is line attractor E(F, L) = I

Most previous models use energy partition -difference is choice of p

Weight and fat loss

Hall, Bain, and Chow, Int J. Obesity, (2007)

E(F,L)=I

Effect of perturbations

L

fixed point

line attractor

Monday, July 12, 2010

fixed point

line attractor

fixed point

line attractor

fixed point

line attractor

$$\rho_F \frac{dF}{dt} = (1-p)(I-E)$$

$$\rho_L \frac{dL}{dt} = p(I-E)$$

$$L$$

$$L$$

$$\rho_L \frac{dL}{dt} + \rho_F \frac{dF}{dt} = I - E(F, L)$$

L

$$\rho_L \frac{dL}{dt} + \rho_F \frac{dF}{dt} = I - E(F, L)$$

 $L = 10.4 \ln F + D$ $L \approx mF + b$
Living on the Forbes curve

$$\rho_L \frac{dL}{dt} + \rho_F \frac{dF}{dt} = I - E(F, L)$$

$$F = M - L$$

$$L = 10.4 \ln F + D$$

$$L$$

$$L \approx mF + b$$

F

Living on the Forbes curve

$$\rho_L \frac{dL}{dt} + \rho_F \frac{dF}{dt} = I - E(F, L)$$

$$F = M - L$$

$$F = \frac{M - b}{1 + m}$$

$$L = 10.4 \ln F + D$$

$$L \approx mF + b$$

Living on the Forbes curve

$$\rho_L \frac{dL}{dt} + \rho_F \frac{dF}{dt} = I - E(F, L)$$

$$F = M - L$$

$$L \approx mF + b$$

$$F = \frac{mM + b}{1 + m}$$

$$F = \frac{M - b}{1 + m}$$

$$\rho \frac{dM}{dt} = I - \epsilon M - b$$

$$\rho = \rho(F) \qquad \quad \rho'(F) > 0$$

$$\rho \frac{dM}{dt} = I - \epsilon M - b$$

$$\rho = \rho(F) \qquad \rho'(F) > 0$$

$$\rho = \frac{dM}{dt} = I - \epsilon M - b \qquad \epsilon = \epsilon(F) \qquad \epsilon'(F) < 0$$

$$\rho = \rho(F) \qquad \rho'(F) > 0$$

$$\rho \frac{dM}{dt} = I - \epsilon M - b \qquad \epsilon = \epsilon(F) \qquad \epsilon'(F) < 0$$

$$\rho \frac{dM}{dt} = I - \epsilon M - b = 0$$

$$\rho \frac{dM}{dt} = I - \epsilon M - b = 0 \qquad M = (I - b)/\epsilon$$

$$\rho \frac{dM}{dt} = I - \epsilon M - b = 0 \qquad M = (I - b)/\epsilon$$
$$\Delta M \sim \frac{1}{\epsilon} \Delta I$$

$$\rho \frac{dM}{dt} = I - \epsilon M - b = 0 \qquad M = (I - b)/\epsilon$$
$$\Delta M \sim \frac{1}{\epsilon} \Delta I$$

$\epsilon \sim 0.1 \text{ MJ/kg/day}^*$

$$\rho \frac{dM}{dt} = I - \epsilon M - b = 0 \qquad M = (I - b)/\epsilon$$
$$\Delta M \sim \frac{1}{\epsilon} \Delta I$$

$\epsilon \sim 0.1 \text{ MJ/kg/day}^*$

$$\rho \frac{dM}{dt} = I - \epsilon M - b = 0 \qquad M = (I - b)/\epsilon$$
$$\Delta M \sim \frac{1}{\epsilon} \Delta I$$

ε ~ 0.1 MJ/kg/day*~ 22 kcal/kg/day

$$\rho \frac{dM}{dt} = I - \epsilon M - b = 0 \qquad M = (I - b)/\epsilon$$
$$\Delta M \sim \frac{1}{\epsilon} \Delta I$$

10 Calories a day = 1 pound

Weight gain increases with weight

Monday, July 12, 2010

Monday, July 12, 2010

$$\rho \frac{dM}{dt} = I - \epsilon M - b$$

$$\rho \frac{dM}{dt} = I - \epsilon M - b$$

 $\tau = \rho/\epsilon$

$$\rho \frac{dM}{dt} = I - \epsilon M - b$$

$$\tau = \rho/\epsilon$$

$\rho \sim 7700$ kcal/kg, $\epsilon \sim 22$ kcal/day, $\tau \sim 1$ year

Monday, July 12, 2010

$$\rho \frac{dM}{dt} = I - \epsilon M - b$$
$$\tau = \rho/\epsilon$$

 $\rho \sim 7700$ kcal/kg, $\epsilon \sim 22$ kcal/day, $\tau \sim 1$ year

 τ increases with weight, decreases with activity

Monday, July 12, 2010

 $\rho \sim 7700$ kcal/kg ~ 3500 kcal/lb

 $\rho \sim 7700$ kcal/kg ~ 3500 kcal/lb

$$\rho \frac{dM}{dt} = I - \epsilon M - b$$

 $\rho \sim 7700$ kcal/kg ~ 3500 kcal/lb

$$\rho \frac{dM}{dt} = I - \epsilon M - b \simeq 0$$
 in steady state

 $\rho \sim 7700$ kcal/kg ~ 3500 kcal/lb

$$\rho \frac{dM}{dt} = I - \epsilon M - b \simeq 0$$
 in steady state

Go on diet $I \rightarrow I - \Delta I$

 $\rho \sim 7700$ kcal/kg ~ 3500 kcal/lb

$$\rho \frac{dM}{dt} = I - \epsilon M - b \simeq 0$$
 in steady state

Go on diet $I \rightarrow I - \Delta I$

Assume no leak

 $\rho \sim 7700$ kcal/kg ~ 3500 kcal/lb

$$\rho \frac{dM}{dt} = I - \epsilon M - b \simeq 0$$
 in steady state

Go on diet $I \rightarrow I - \Delta I$

Assume no leak

$$\rho \frac{dM}{dt} \simeq -\Delta I \quad \Rightarrow \quad \Delta M = -\frac{\Delta I \Delta t}{\rho}$$

 $\rho \sim 7700$ kcal/kg ~ 3500 kcal/lb

$$\rho \frac{dM}{dt} = I - \epsilon M - b \simeq 0$$
 in steady state

Go on diet $I \rightarrow I - \Delta I$

Assume no leak

$$\rho \frac{dM}{dt} \simeq -\Delta I \quad \Rightarrow \quad \Delta M = -\frac{\Delta I \Delta t}{\rho}$$

 $\rho \sim 7700$ kcal/kg ~ 3500 kcal/lb

$$\rho \frac{dM}{dt} = I - \epsilon M - b \quad \simeq 0$$

Go on diet $I \rightarrow I - \Delta I$

 $\begin{array}{c}
100 \\
99 \\
98 \\
97 \\
96 \\
0 \\
1 \\
2
\end{array}$

Years

Assume no leak

$$\rho \frac{dM}{dt} \simeq -\Delta I \quad \Rightarrow \quad \Delta M = -\frac{\Delta I \Delta t}{\rho}$$

Weight (kg)
"There is no stranger phenomenon than the maintenance of a constant body weight under marked variation in bodily activity and food consumption." Eugene Dubois, 1927.

"There is no stranger phenomenon than the maintenance of a constant body weight under marked variation in bodily activity and food consumption." Eugene Dubois, 1927.

3500 kcal = 1 lb

"There is no stranger phenomenon than the maintenance of a constant body weight under marked variation in bodily activity and food consumption." Eugene Dubois, 1927.

3500 kcal = 1 lb Eat one million kcal/year

"There is no stranger phenomenon than the maintenance of a constant body weight under marked variation in bodily activity and food consumption." Eugene Dubois, 1927.

"There is no stranger phenomenon than the maintenance of a constant body weight under marked variation in bodily activity and food consumption." Eugene Dubois, 1927.

1 kg ~ 22 kcal/day

"There is no stranger phenomenon than the maintenance of a constant body weight under marked variation in bodily activity and food consumption." Eugene Dubois, 1927.

Beltsville one year intake study (courtesy of W. Rumpler)

 $CV \sim 24\%$

Beltsville one year intake study (courtesy of W. Rumpler)

CV~24%

Beltsville one year intake study (courtesy of W. Rumpler)

 $CV \sim 24\%$

 $CV \sim 1\%$

Beltsville one year intake study (courtesy of W. Rumpler)

Intake variations have little effect on weight

Noisy intake

$$I(t) = \bar{I} + \eta(t) \qquad \langle \eta(t)\eta(t') \rangle = \sigma^2 \delta(t - t')$$

Noisy intake

$$I(t) = \bar{I} + \eta(t) \qquad \langle \eta(t)\eta(t') \rangle = \sigma^2 \delta(t - t')$$

Ornstein-Uhlenbeck process

Noisy intake

$$I(t) = \bar{I} + \eta(t) \qquad \langle \eta(t)\eta(t') \rangle = \sigma^2 \delta(t - t')$$

Ornstein-Uhlenbeck process

$$\rho \frac{dM}{dt} = \bar{I} - b - \epsilon M + \eta(t)$$

Noisy intake

$$I(t) = \bar{I} + \eta(t) \qquad \langle \eta(t)\eta(t') \rangle = \sigma^2 \delta(t - t')$$

Ornstein-Uhlenbeck process

$$\rho \frac{dM}{dt} = \bar{I} - b - \epsilon M + \eta(t)$$

$$CV(I)$$
 is $\frac{\sigma\sqrt{\text{day}}}{\bar{I}}$

Weight variance

$$\operatorname{Var}(M) = \frac{\sigma^2}{2\tau\epsilon^2}$$

Weight variance

Г

$$\operatorname{Var}(M) = \frac{\sigma^2}{2\tau\epsilon^2}$$

$$CV(M) = \frac{1}{\sqrt{2\tau}} \frac{\bar{I}}{\bar{I} - b} CV(\bar{I}) \sqrt{day}$$

$$\operatorname{Var}(M) = \frac{\sigma^2}{2\tau\epsilon^2}$$

$$CV(M) = \frac{1}{\sqrt{2\tau}} \frac{\bar{I}}{\bar{I} - b} CV(\bar{I}) \sqrt{day}$$

For $\sqrt{2\tau} \sim 30, \bar{I} \sim 2500, b \sim 600$

$$\operatorname{Var}(M) = \frac{\sigma^2}{2\tau\epsilon^2}$$

$$CV(M) = \frac{1}{\sqrt{2\tau}} \frac{\bar{I}}{\bar{I} - b} CV(\bar{I}) \sqrt{day}$$

For $\sqrt{2\tau} \sim 30, \bar{I} \sim 2500, b \sim 600$ CV (M) ~ CV (I)/20

$$\operatorname{Var}(M) = \frac{\sigma^2}{2\tau\epsilon^2}$$

$$CV(M) = \frac{1}{\sqrt{2\tau}} \frac{\bar{I}}{\bar{I} - b} CV(\bar{I}) \sqrt{day}$$

For $\sqrt{2\tau} \sim 30, \bar{I} \sim 2500, b \sim 600$ CV (M) ~ CV (I)/20

No paradox because of long time constant

$$\rho \frac{dM}{dt} = \bar{I} - b - (\epsilon + \eta_a(t))M + \eta_I(t)$$

$$\rho \frac{dM}{dt} = \bar{I} - b - (\epsilon + \eta_a(t))M + \eta_I(t)$$

 $\rho \frac{dM}{dt} = \bar{I} - b - (\epsilon + \eta_a(t))M + \eta_I(t)$

$$\rho \frac{dM}{dt} = \bar{I} - b - (\epsilon + \eta_a(t))M + \eta_I(t)$$

$$dM = \frac{1}{\rho}(\bar{I} - b - \epsilon M)dt + \frac{1}{\rho}\sqrt{\sigma_I^2 - 2c\sigma_I\sigma_a + \sigma_a^2 M^2}dW$$

$$\rho \frac{dM}{dt} = \bar{I} - b - (\epsilon + \eta_a(t))M + \eta_I(t)$$

$$dM = \frac{1}{\rho}(\bar{I} - b - \epsilon M)dt + \frac{1}{\rho}\sqrt{\sigma_I^2 - 2c\sigma_I\sigma_a + \sigma_a^2 M^2}dW$$

$$\operatorname{Var}(M) = \frac{\frac{\sigma_I^2}{2\epsilon\rho} + \frac{\sigma_a^2(I-b)^2}{2\epsilon^3\rho^3} - \frac{c\sigma_I\sigma_a(I-b)}{2\epsilon^2\rho^2}}{1 - \frac{\sigma_a^2}{2\epsilon^3\rho^2}}$$

$$\rho \frac{dM}{dt} = \bar{I} - b - (\epsilon + \eta_a(t))M + \eta_I(t)$$

$$dM = \frac{1}{\rho}(\bar{I} - b - \epsilon M)dt + \frac{1}{\rho}\sqrt{\sigma_I^2 - 2c\sigma_I\sigma_a + \sigma_a^2 M^2}dW$$

$$\operatorname{Var}(M) = \frac{\frac{\sigma_I^2}{2\epsilon\rho} + \frac{\sigma_a^2(I-b)^2}{2\epsilon^3\rho^3}}{1 - \frac{\sigma_a^2}{2\epsilon^3\rho^2}} \frac{c\sigma_I\sigma_a(I-b)}{2\epsilon^2\rho^2}$$

$$\rho \frac{dM}{dt} = \bar{I} - b - (\epsilon + \eta_a(t))M + \eta_I(t)$$

$$dM = \frac{1}{\rho}(\bar{I} - b - \epsilon M)dt + \frac{1}{\rho}\sqrt{\sigma_I^2 - 2c\sigma_I\sigma_a + \sigma_a^2 M^2}dW$$

$$\operatorname{Var}(M) = \frac{\frac{\sigma_I^2}{2\epsilon\rho} + \frac{\sigma_a^2(I-b)^2}{2\epsilon^3\rho^3}}{1 - \frac{\sigma_a^2}{2\epsilon^3\rho^2}} \frac{c\sigma_I\sigma_a(I-b)}{2\epsilon^2\rho^2}}{1 - \frac{\sigma_a^2}{2\epsilon^3\rho^2}}$$

Simulated data 10 years

CV ~ 23%

CV ~ 2%

Correlations increase fluctuations

CV ~ 26%

CV ~ 5%

Correlations increase fluctuations

 $CV \sim 26\%$ $CV \sim 5\%$

Longer correlations \Rightarrow higher BMI

Periwal and Chow, AJP:EM, 291:929-36 (2006)

Hall, Guo, Dore, Chow. PLoS One (2009)

Hall, Guo, Dore, Chow. PLoS One (2009)

Excess food more than explains obesity epidemic

NHANES data

Time

Monday, July 12, 2010

Monday, July 12, 2010

Monday, July 12, 2010

July 12, 2010

Time

B = BMI A = Age - 18Y = Year - 1974

B(A,Y) = g(B(0,0), A, Y)

B(A,Y) = g(B(0,0), A, Y)

B = BMIA = Age -18Y = Year -1974

- Use Bayesian Model Comparison, e.g. MS50

B(A,Y) = g(B(0,0), A, Y)B = BMIA = Age -18Y = Year -1974

- Use Bayesian Model Comparison, e.g. MS50

$$\chi^{2} = \sum_{A,Y} \left(P[g(B, A, Y) | A, Y] \frac{dg}{dB} - P[B|0, 0] \right)^{2}$$

B(A,Y) = g(B(0,0), A, Y)B = BMIA = Age -18Y = Year -1974

- Use Bayesian Model Comparison, e.g. MS50

$$\chi^{2} = \sum_{A,Y} \left(P[g(B, A, Y) | A, Y] \frac{dg}{dB} - P[B|0, 0] \right)^{2}$$

Does Forbes law explain distribution change?

B(A,Y) = g(B(0,0), A, Y)B = BMIA = Age -18Y = Year -1974

- Use Bayesian Model Comparison, e.g. MS50

$$\chi^{2} = \sum_{A,Y} \left(P[g(B, A, Y) | A, Y] \frac{dg}{dB} - P[B|0, 0] \right)^{2}$$

Does Forbes law explain distribution change?

$$\frac{P(\text{Not Forbes}^*|\text{NHANES})}{P(\text{Forbes}|\text{NHANES})} \simeq 1.6$$

Best model

Best model

B(A,Y) = B(0,0)(1+0.0049A+0.015Y) - 0.038A - 0.20Y

Best model

B(A,Y) = B(0,0)(1+0.0049A+0.015Y) - 0.038A - 0.20Y

$B(A_2, Y_2) = (B(A_1, Y_1) + 0.038A_1 + 0.2Y_1)\frac{1 + 0.0049A_2 + 0.015Y_2}{1 + 0.0049A_1 + 0.015Y_1} - 0.038A_2 - 0.2Y_2$

Transformed 1974

Transformed 1985

Transformed 2005

Acknowledgments

Heather Bain Michael Dore Kevin Hall Vipul Periwal Juen Guo: MS1

Michael Buice: MS43 Wed PM

Sarosh Fatakia: MS57 Th AM

Slides will be at sciencehouse.wordpress.com

NIMBioS workshop July 12-15, 2011

www.nimbios.org/workshops/WS_metabolism.html