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Coupled Oscillators

® Coupled oscillators describe many
phenomena including dynamics of neural
circuits, synchronization of fireflies,
crickets, Josephson junctions, ...

® Most analyses focused on small systems or
infinitely large (mean field limit)

® Networks that are large but not infinite is
not well understood



Kuramoto Model

Ci,?" — a)i+§ ;f(ej—ei) f(0) =sin(0)

where o, is drawn from a distribution g(w)

Weak coupling limit (phase of limit cycle)

Interested in dynamics of NV large but not infinite



Iwo oscillator example

do K .
d—tl = W1 + 58111(92 — 91)
do K
d—tz = W + ESin(el — 62)
ay
¥ — Aw—Ksi
7 sin(y)
Vv=0,—-6, A® = ®; —

Fixed points obey A?(D = sin(y)



Fixed points at intersection

Unstable
N

AN
Stable

K.=Aw is the critical (bifurcation) point

No fixed points for K < K.



Unlocked

K:.25Kc



Locked

K:2.5Kc




Mean field theory

® Kuramoto showed in mean field theory
l.e. N — o, oscillators partially phase lock
if K>K.=2y (width of frequency dist.)

® |ntroduced order parameter




Example simulations
Subpretichitifinclbe kew)

A

v




Fluctuations due to finite size

K/K,

Want to estimate finite-size fluctuations



Stability

Kuramoto showed the existence of two
branches (locked and incoherent) in 70’s

But did not calculate stability

Postulated that incoherent state becomes
unstable at critical point

Stability of incoherent state calculated by
Strogatz and Mirollo in 1990



Continuity equation approach
(Strogatz and Mirollo, 1990)

Probability density: p(6,t)

Oscillator dynamics: o =0ty L (6;-6)

U_H—W+K/27T/ f(0 w')db' dw'’

oscillator “velocity”



Oscillator conservation implies:

dp  Owp) _
ot 96

Continuity equation:

6:0 0 > o / ;o /7 0
— +w— + K— f(@ —0)p(0,w,t)p(0,w,t)dd'dw’ =0



Incoherent State

Solution to continuity equation is the
incoherent state p(6) =1/2x

Consider perturbations §pe®’, solve
eigenvalue problem (spectrum)

Unstable if s has positive real part
Eisenvalues becomes unstable at K=K,

Continuous spectrum on imaginary axis

Incoherent state is marginally stable!



A single oscillator in the incoherent state in the
mean field limit N — o

Oscillators don’t interact - i.e. marginally stable
modes



Finite Size effects




Recap

Kuramoto model bifurcates from incoherence
to partial locking at K.

Seen in order parameter /Z
Simulations with finite N show fluctuations

Incoherent state is marginally stable in mean-
field limit but seems stable in simulations

Need to include finite N effects (same problem
encountered in theory of gases and plasmas)



Kinetic theory approach

® Re-interpret the probability density

Goot—— o(m— ;)

2
Mz

Continuity (“Klimontovich™) equation

on om d [ [ / AN I Ty —
Srogakss [ [ 76 —om(@.0.n(6,0,1)d8dw =0

includes finite size fluctuations



Klimontovich equation contains all the
information of the original system (density
is not smooth)

To be useful, need to do averaging

Strogatz and Mirollo considered the “mean
field limit” where the density is smooth

To consider finite size fluctuations, need to
use the Klimontovich equation



ltems to calculate

® Fluctuations =Variance of order parameter
(Two-oscillator density function)

(Z|%) /dwdm’dede’m(m 0,)n(w,8,1))e'®?)

® Stability = Spectrum of linearized
Klimontovich equation (to order //N )

® Estimate using moment hierarchy or
probability density functional of # (field

theory)



Moment hierarchy

Take ensemble average over initial condition and
frequencies of Klimontovich equation

2n
—+0)—+K—/ / (0'—0)M(0,w',1)M(0,w,1)d0'dwy =0

One oscillator density p(6,) = (n(6,0)) satisfies

2T 2T
—+(0—+K—/ / 18 — p(x',1)d0'dw = —K—/ / (8 —0)C(x,x',t)d6'de

where x=(0,0)

Cxd 1) = (5 ON(.0) ~ PLrr)p(eot) + (. )P(Yr) ~ 2B(r— X )p(e.1)



One-oscillator density depends on two-
oscillator density (correlation function)

Form two-oscillator density equation:
multiply Klimontovich equation by # and
take ensemble average

Two-oscillator density depends on three-
oscillator density, ...

BBGKY moment hierarchy

Must truncate to be useful



First two equations of hierarchy (with Gaussian closure)

21 2T
——I—a)—+K— / / 16— 0)p(x,1)p (¥, 1)d0'def = —K~ / / £(6/ — 0)C(x, . 1)d0'de
{2+m—+w—+K/ /27; (63 —6 +i (03 —02)]p(x3,7)dO3dws }C( t)
3 1861 2862 861 3—01) 20, 3 —02)pixs, 3d W3 ;L (X1, X2,

27
—|—K/ / ae 63 —91 Xl, )C(XQ,X3,l)de3d(D3
1
27
‘|‘K/ / 86 93 —92 XQ, )C(X3,X1,I)d93d0)3}
2

K. 9

_]—v[aelf(ez —0;) —|—i (01 —0,)]p(x1,2)p(x2,2)

00,

Captures two-oscillator interactions (finite-size
fluctuations) but unwieldy to solve



If we ignhore two-oscillator interactions (collisions)

get “Vlasov” equation

o 2T
—+oo—+Ki / f(O —0m(x,t)n(x,1)d0'dey =0

Difference is the smoothness of solutions

Most people go straight to Vlasov equation but it is
only valid in the mean field limit



Statistical field theory

Klimontovich equation:

27
Oln] = 6—77 w— 09 / / f(o n(@ W', t)n(0,w,t)dd’ dv’ = 6(t — to)no(6,w)

Equation for a probability density 1)

Want to calculate moments of the density 1)

Need a “density of the density”



Statistical field theory

ot = 4 D4 2 [ [ 10— 0@ (0,000 = 50 10 (8,9
Probability density functional of the density is

Fln,mol = 0 [N{O[n(8,w,t)] = d(t —to)mo(6,w)}
Marginalize over initial densities

Fln(8,w,1)] = / DiioFolno)6 [N {018, w, 1)) — 6(t — to)no(6,w)}]

Path integral over initial densities



Functional Fourier decomposition 6(x) O</e‘““’%lk

Fln(0,w,t)] = /DﬁDnofo[no] exp (—N/dﬁdwdtﬁ[O[n] —5(75—?50)770(9700)])

where 7(6,w,t) is the “MSR response field”

Convenient to consider joint density functional

Fln, il = / DrioFolno] exp (—N / d0dwdt O] + N / d@dwﬁ(e,w,tom(e,w))

which obeys 1 — / DyDRF [, 7 7o)



Integrate over initial data and frequencies

~

Fln,n] = exp (—N/d@dwdt nO[n] + N In {1 - /d@dw [eﬁ(e’w’to) — 1} po(H,w)}>

To simplify initial condition contribution

Make the following transformation

~

p(0,w,t) = nexp(—1n)
(0, w,t) +1 = exp(7n)

Moments of 77 can be expressed in terms
of moments of ¢



Results in

~

Flo, p| = exp (=N S[p, ¢])
with “action”

J d J
S[0. ] = [ dodedr [(p (g + %) 0+ K [ d/d® (§+) 5. {/(6~ )00}

_In [1 + / d0dod(0, o, to)po(e,a))]

Calculate moments perturbatively using method of
steepest descents (loop expansion)



Loop Expansion
Moments (@"P™) = / DOD® ¢"§" ¢~ NSI0.0

® Steepest descent asymptotic expansion
(e.g. expand around saddle point)

® Expand path integral in terms of “Gaussian
moments” in powers of I/N

® Can keep track of terms by using “Feynman
diagrams”



Simple example

<l/t2> _ / u2eN(iP_luv—av2+ibu2v—cu2v2)d® dm — N dudv
oo 2nP

N/ uzeiNP_luv(l—an2+ibNu2v—cNu2v2+---)dO)

n

. . ” n.m iNP luy ! n
Use identity /_ W'V do = P8,

Only terms with equal numbers of v and u survive



Diagrams

Bookkeeping for expansion can be aided with diagrams
with rules for assembly

Propagator P/N <

Vertices

WS> ow =< %X

Moment (u"v") is the sum of all diagrams with n
outgoing legs and m incoming legs

Legs of vertices are joined by propagators



Loop expansion to order I/N?

XX
f-> 0%

ONa(P/N)* + 24NaNc¢(P/N)* + O(1/N?)

Combinatorics is only tricky part



Field Theory for Kuramoto

< /D(PD(P(P (Pm ~NSle.0) S[(qu)]:SF[(P,(T)]_'_SI[(P,(P]
~1 ~ J J / /a ‘ / / — & . AN 1Ip-1
SF[cp,cp]/dwd@dﬂpKaﬁwae)(HK/ddeae{f(e 9)((PP+P<P)}] =Q-N"F -9

510.0] = [ dwdoard |k [ dae'sy (76~ 0) (o)} + K [ daiaed'sy (6 ~0) (@' +p) (0 p)}

k

(o o)

-y (- [ / d0dod (0, m,)po (6, 00)]

k=2




Diagrams for Kuramoto model

X o—uag—ae X Py(x,t|x 1)
X X
T X*< KNa%{f(e’—G)...} IV >+x’ Qg( )ae{f(ﬁ’ 0)}
/ /
X X
X X X
II X KNi{f(e’—e)...} vV >+X KN( )aa{f(e’ 0)...}
/ / 06 /
X X X
X KN §§ (_1)k+1 k

Xk

Integrate over x, x ' in the diagrams



Finite size fluctuations

Variance of order parameter

1
(1Z]°) /doodm’dede C(0,0:00,8',1)e ) 4

C(x1,t13x2,82) = (Q(x1,11)Q(x2,12) )

Use loop expansion to compute correlation function



Diagrams of correlation function

> Tree level

a)

b)

2O 2> 2
O =



Order I/N expansion (tree level)

21 t
C(Xl,ll;XZ,lz) = —— /d(DIZ/O d@ideé/ dt’PO(xl,x’l,tl —l,)PQ(XQ,X/Z,Iz—I,)
1o

[Wf(elz 6)) + Wf(ell 6)|g(0))g(w))

Propagator Py(0,m,7]0',0.7) = (0(8,®,1)®(0',0,¢")) satisfies

a a p p g(a)) a 0 2T , ,
[at—Fm%] PO(xjxjt_t)+K 27[ ae[w/() f(Gl_G)PO(XI’,X’l'—Z')deld(Dl

— ]lvﬁ(e —0"0(w—)d(r —1")



Laplace-Fourier transform in # and 6:

[s +in®| Py(n,m, ', s) +inKg(m / Py(n, 0,0, s)dw, —ﬁéi(m o)
Integrate over w:
/ dwhy(n, 0,',5) = Z;Ns +in(x)’An1(s)

An(s) = 1+inK f(~ /d“’s+ln)m “Dielectric function”

Tree level propagator:

1 (w—) 1 inKg(o)f(—n) 1
2N s+in®w 27N (s+ in®) (s + in®') A,(s)

Py(n,o,0,s) =



Fluctuations

. , |
(|1Z]*(7)) :/d(oda)’dede’C(x,x’,T)ed@—@)+N

Z2(r)) = 1.,
121(T) z‘KNw/EdS CET [Al(s)L_SO s TN

for g(®) = =

:1 K. _1 K (KK
NK.— K NK.—K

(1Z*(7))

Expect theory to breakdown near critical point



Comparison to simulations

20 a)' 5
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N
=,
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Hildebrand, Buice and Chow, PRL (2007)



Stability of incoherent state
mean field theory

Consider perturbations to Vlasov equation
Sub p=g(w)/2n+8p in

) 27
2 0P k2 [ [T (0 0)p(0, 0/, 0)p(6.0,1)d0 0l =0

To obtain

d d

—0p = —w=—=0 —Kg(m) 0 /OO/Mf(O —0)0p(x1,x',t —1')dO;dw; = L- 5
a P T %P T a0 ), ST T RIOPLY, 1601 = £ 0P




- Compute spectrum of linear operator L
i.e. values of s where (s-L)"/ is unbounded

- Incoherent state stable if spectrum in left plane

- Spectrum given by poles of propagator
(Green’s function)

%, 0 21
lat_HDa_I Po(oe, ¥t — t)+K T 89/ / (67 —0)Py(x;,x',t —1')dO1dw,

_ %5(9 —0)3(0— o)3(r — 1)

- In Fourier-Laplace space

1 (w—) 1 inKg(w)f(—n) 1
2N s+in® 27N (s+ in®) (s + in®') A,(s)

f)()(l’l, ®, (D/, S) —



Spectrum

Continuous spectrum on imaginary axis
(marginally stable modes)

Point spectrum (eigenvalues) given by zeros
of dielectric function (analytically continue)

One eigenvalue in left plane, crosses
imaginary axis at critical point K=K,

Incoherent state is marginally stable in
mean field limit (tree level)



Order parameter dynamics near
incoherent state

1 . .
Z(t) = N;elef — / d0dom (8, m,t)e"

(52(1)) = / d0dwdp(6, . 1)e”

For smooth perturbation  3p(6,®) = ¢(8)g(w)

S 2T
50(6,0,1) = N / / Po(x, ¥, 1)c(6))g(@)d0'de



In Laplace space (8Z(s)) = c_1

For Cauchy 8(®) =

Ail(S) —

Order parameter decays to zero by dephasing

(8Z) = c_le_(y_%)T



Dephasing for smooth perturbation

® Strogatz, Mirollo and Matthews (1992) showed that
dephasing leads to effective dissipation of Z (like

Landau damping in plasma physics)

!ﬁ | ')

N



Non-smooth perturbation

Fix a single oscillator

Opo(6,w) = ]%] [—%ﬁs) +0(6 —6p)d(®w — @)

11
~ Ns—inwgA_(s)

(Z(s))

Z oscillates

Pl 1 K , K. —ieot : K\ K —(y-5)t
-l ) e (i e



Stabilization by finite size fluctuations

Calculate stability of incoherent state to order I/N

Spectrum of linearized Klimontovich operator

['(s)=s—L

Obtain by solving perturbatively

[(s) -P= ]le(x —x)o(r—1")



Calculate 7(s) P using loop expansion
(To+T))- P, :]%6(6—6’)8((0—(0’)8@—#)

where [y P;is the linearized Vlasov equation

2T
Iy-P = [ —|—0)——|—K—/ / 91 Xl, a’G 1d®q Pl(xx t—t)

2T
—I—Kae/ / f 61 X t Pl(xl x t—t)d@ dm,



and /7 P;is given by diagrams:
O O
c) :x ; x d)

2T o t
[P :/ d¢/ dn/ dt"T1,(0,;0,M;t — ") P (0,m, "0, ;1)
0 —oo t

2n 0 t
+/ d(])/ dn/ dt'T.(0,;0,M;t —t") P (o,m,1"; 0", ;1)
0 —o0 t

2T oo t
+/ d¢/ dn/ di'T4(0, ;0,1 — ") P (d,m,1"; 0", ;1)
0 —oo t



where

27 0 t
/ do / dv / d'T1,(8,: 0, Vit — "\ P(0,v, 1" 0, o s 1)
0 —o0 t

K2
- —— / 40,de,d®’ doy, d6,dw,d,

%,
%[f(eé_g) {PO( /270)/27t;e/17wllatl)P()(G?wvt;ela(Dlatl) _|_P0( /270)/27t;917mlvtl)PO(eawat;ellamllvtl)}]

0
Xa_el[f(ell_el){p( /17(Dllatl)P(elamlatl;elamlvt/)+p(elam17t1)P( /lamllatl;elamlvt/)}]

similarly for T';, and T



Results

Continuous spectrum is moved into left plane and
frequency distribution is narrowed

For Cauchy distributed frequencies

s+ in(0+ dw) +n°D =0

oMW = —

K> o 4y—K b K? Y
2N(y_§)2+wz 2Yy—K

Eigenvalue is shifted

K\ 1K
sp=—(V—= ) +==
=% ) TN2

< K ) Ky Jr61(—1{
2y—K (y_g)z_yz 2y—K



Order parameter perturbation

1 1 K
Z — —Dt st
(1) N (Y— %) [’Ye 26 ]



Stability due to oscillator diffusion




Z,(0

Comparison to simulations
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Summary

® |arge but not infinite network of coupled
oscillators contain correlations and
fluctuations not present in mean field limit

® Kinetic theory approach (Klimontovich
equation) captures these effects

® Field theory, which is equivalent to BBGKY
moment hierarchy, can be used for
perturbative calculations



