The hazards of being obese

One of my favourite contrarian positions is that being overweight is not so bad. I don’t truly believe this but I like to use it to point out that although most everyone holds that being obese is not healthy, there is actually very little evidence to support this assertion. However, this recent rather impressive paper in the Lancet finally shows that being overweight or obese is really bad. The paper is a meta-analysis of hundreds of studies with a combined study size of over 10 million! The take home message is that the hazard ratio for dying is significantly greater than one but not too bad for overweight and mildly obese people (BMI < 30) but increases sharply after that. It is over two and rapidly increasing for BMI greater than 35. The hazard ratio gives the relative probability of mortality (or any outcome) per unit time (i.e. mortality rate) in a survival analysis, which in this case was a Cox proportional hazards model. The hazard ratio as a function of BMI is well fit by a quadratic function with a minimum around 22 kg/m^2. The chances of dying increase if you are thinner or fatter than this. The study was careful to not include smokers and anyone with a chronic disease and also did not start the analysis until 5 years after the measurement to avoid capturing people who are thin because they are already ill. They also broke the model down into various regions. Surprisingly, the chances of dying when you are obese is worse if you are in Europe or North America compared to Asia. Particularly surprising is the fact that the hazard ratio rises slowest in South Asia for increasing BMI. South Asians have been found to be more susceptible to insulin resistance and Type II diabetes with increased body fat but it seems that they die from it at lower rates. However, the error bars were also very large because the sample size was smaller so this may not hold up with more data. In any case, I can no longer use the lack of health consequences of obesity to rib my colleagues so I’ll have to find a new axe to grind.

Low carb diet study paper finally out

Kevin Hall’s long awaited paper on what I dubbed “the land sub” experiment, where subjects were sequestered for two months, is finally in print (see here). This was the study funded by Gary Taube’s organization Nusi. The idea was to do a fully controlled study comparing low carb to a standard high carb diet to test the hypothesis that high carbs lead to weight gain through increased insulin. See here for a summary of the hypothesis. The experiment showed very little effect and refutes the carbohydrate-insulin model of weight gain. Kevin was so frustrated with dealing with Nusi that he opted out of any follow up study. Taubes did not support the conclusions of the paper and claimed that the diet used (which Nusi approved) wasn’t high enough in carbs. This is essentially positing that the carb effect is purely nonlinear – it only shows up if you are just eating white bread and rice all day. Even if this were true it would still mean that carbs could not explain the increase in average body weight over the past three decades since there is a wide range of carb consumption over the general population. It is not as if only the super carb lovers were getting obese. There were some weird effects that warrant further study. One is that study participants seemed to burn 500 more Calories outside of a metabolic chamber compared to inside. This was why the participants lost weight on the lead-in stabilizing diet. These missing Calories far swamped any effect of macronutrient composition.

AlphaGo and the Future of Work

In March of this year, Google DeepMind’s computer program AlphaGo defeated world Go champion Lee Sedol. This was hailed as a great triumph of artificial intelligence and signaled to many the beginning of the new age when machines take over. I believe this is true but the real lesson of AlphaGo’s win is not how great machine learning algorithms are but how suboptimal human Go players are. Experts believed that machines would not be able to defeat humans at Go for a long time because the number of possible games is astronomically large, \sim 250^{150} moves, in contrast to chess with a paltry \sim 35^{80} moves. Additionally, unlike chess, it is not clear what is a good position and who is winning during intermediate stages of a game. Thus, any direct enumeration and evaluation of possible next moves as chess computers do, like IBM’s Deep Blue that defeated Gary Kasparov, seemed to be impossible. It was thought that humans had some sort of inimitable intuition to play Go that machines were decades away from emulating. It turns out that this was wrong. It took remarkably little training for AlphaGo to defeat a human. All the algorithms used were fairly standard – supervised and reinforcement backpropagation learning in multi-layer neural networks1. DeepMind just put them together in a clever way and had the (in retrospect appropriate) audacity to try.

The take home message of AlphaGo’s success is that humans are very, very far away from being optimal at playing Go. Uncharitably, we simply stink at Go. However, this probably also means that we stink at almost everything we do. Machines are going to take over our jobs not because they are sublimely awesome but because we are stupendously inept. It is like the old joke about two hikers encountering a bear and one starts to put on running shoes. The other hiker says: “Why are you doing that? You can’t outrun a bear.” to which she replies, “I only need to outrun you!” In fact, the more difficult a job seems to be for humans to perform, the easier it will be for a machine to do better. This was noticed a long time ago in AI research and called Moravec’s Paradox. Tasks that require a lot of high level abstract thinking like chess or predicting what movie you will like are easy for computers to do while seemingly trivial tasks that a child can do like folding laundry or getting a cookie out of a jar on an unreachable shelf is really hard. Thus high paying professions in medicine, accounting, finance, and law could be replaced by machines sooner than lower paying ones in lawn care and house cleaning.

There are those who are not worried about a future of mass unemployment because they believe people will just shift to other professions. They point out that a century ago a majority of Americans worked in agriculture and now the sector comprises of less than 2 percent of the population. The jobs that were lost to technology were replaced by ones that didn’t exist before. I think this might be true but in the future not everyone will be a software engineer or a media star or a CEO of her own company of robot employees. The increase in productivity provided by machines ensures this. When the marginal cost of production goes to zero (i.e. cost to make one more item), as it is for software or recorded media now, the whole supply-demand curve is upended. There is infinite supply for any amount of demand so the only way to make money is to increase demand.

The rate-limiting step for demand is the attention span of humans. In a single day, a person can at most attend to a few hundred independent tasks such as thinking, reading, writing, walking, cooking, eating, driving, exercising, or consuming entertainment. I can stream any movie I want now and I only watch at most twenty a year, and almost all of them on long haul flights. My 3 year old can watch the same Wild Kratts episode (great children’s show about animals) ten times in a row without getting bored. Even though everyone could be a video or music star on YouTube, superstars such as Beyoncé and Adele are viewed much more than anyone else. Even with infinite choice, we tend to do what are peers do. Thus, for a population of ten billion people, I doubt there can be more than a few million that can make a decent living as a media star with our current economic model. The same goes for writers. This will also generalize to manufactured goods. Toasters and coffee makers essentially cost nothing compared to three decades ago, and I will only buy one every few years if that. Robots will only make things cheaper and I doubt there will be a billion brands of TV’s or toasters. Most likely, a few companies will dominate the market as they do now. Even, if we could optimistically assume that a tenth of the population could be engaged in producing goods and services necessary for keeping the world functioning that still leaves the rest with little to do.

Even much of what scientists do could eventually be replaced by machines. Biology labs could consist of a principle investigator and robot technicians. Although it seems like science is endless, the amount of new science required for sustaining the modern world could diminish. We could eventually have an understanding of biology sufficient to treat most diseases and injuries and develop truly sustainable energy technologies. In this case, machines could be tasked to keep the modern world up and running with little need of input from us. Science would mostly be devoted to abstract and esoteric concerns.

Thus, I believe the future for humankind is in low productivity occupations – basically a return to pre-industrial endeavors like small plot farming, blacksmithing, carpentry, painting, dancing, and pottery making, with an economic system in place to adequately live off of this labor. Machines can provide us with the necessities of life while we engage in a simulated 18th century world but without the poverty, diseases, and mass famines that made life so harsh back then. We can make candles or bread and sell them to our neighbors for a living wage. We can walk or get in self-driving cars to see live performances of music, drama and dance by local artists. There will be philosophers and poets with their small followings as they have now. However, even when machines can do everything humans can do, there will still be a capacity to sustain as many mathematicians as there are people because mathematics is infinite. As long as P is not NP, theorem proving can never be automated and there will always be unsolved math problems.  That is not to say that machines won’t be able to do mathematics. They will. It’s just that they won’t ever be able to do all of it. Thus, the future of work could also be mathematics.

  1. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).

The simulation argument made quantitative

Elon Musk, of Space X, Tesla, and Solar City fame, recently mentioned that he thought the the odds of us not living in a simulation were a billion to one. His reasoning was based on extrapolating the rate of improvement in video games. He suggests that soon it will be impossible to distinguish simulations from reality and in ten thousand years there could easily be billions of simulations running. Thus there are a billion more simulated universes than real ones.

This simulation argument was first quantitatively formulated by philosopher Nick Bostrom. He even has an entire website devoted to the topic (see here). In his original paper, he proposed a Drake-like equation for the fraction of all “humans” living in a simulation:

f_{sim} = \frac{f_p f_I N_I}{f_p f_I N_I + 1}

where f_p is the fraction of human level civilizations that attain the capability to simulate a human populated civilization, f_I is the fraction of these civilizations interested in running civilization simulations, and N_I is the average number of simulations running in these interested civilizations. He then argues that if N_I is large, then either f_{sim}\approx 1 or f_p f_I \approx 0. Musk believes that it is highly likely that N_I is large and f_p f_I is not small so, ergo, we must be in a simulation. Bostrom says his gut feeling is that f_{sim} is around 20%. Steve Hsu mocks the idea (I think). Here, I will show that we have absolutely no way to estimate our probability of being in a simulation.

The reason is that Bostrom’s equation obscures the possibility of two possible divergent quantities. This is more clearly seen by rewriting his equation as

f_{sim} = \frac{y}{x+y} = \frac{y/x}{y/x+1}

where x is the number of non-sim civilizations and y is the number of sim civilizations. (Re-labeling x and y as people or universes does not change the argument). Bostrom and Musk’s observation is that once a civilization attains simulation capability then the number of sims can grow exponentially (people in sims can run sims and so forth) and thus y can overwhelm x and ergo, you’re in a simulation. However, this is only true in a world where x is not growing or growing slowly. If x is also growing exponentially then we can’t say anything at all about the ratio of y to x.

I can give a simple example.  Consider the following dynamics

\frac{dx}{dt} = ax

\frac{dy}{dt} = bx + cy

y is being created by x but both are both growing exponentially. The interesting property of exponentials is that a solution to these equations for a > c is

x = \exp(at)

y = \frac{b}{a-c}\exp(at)

where I have chosen convenient initial conditions that don’t affect the results. Even though y is growing exponentially on top of an exponential process, the growth rates of x and y are the same. The probability of being in a simulation is then

f_{sim} = \frac{b}{a+b-c}

and we have no way of knowing what this is. The analogy is that you have a goose laying eggs and each daughter lays eggs, which also lay eggs. It would seem like there would be more eggs from the collective progeny than the original mother. However, if the rate of egg laying by the original mother goose is increasing exponentially then the number of mother eggs can grow as fast as the number of daughter, granddaughter, great…, eggs. This is just another example of how thinking quantitatively can give interesting (and sometimes counterintuitive) results. Until we have a better idea about the physics underlying our universe, we can say nothing about our odds of being in a simulation.

Addendum: One of the predictions of this simple model is that there should be lots of pre-sim universes. I have always found it interesting that the age of the universe is only about three times that of the earth. Given that the expansion rate of the universe is actually increasing, the lifetime of the universe is likely to be much longer than the current age. So, why is it that we are alive at such an early stage of our universe? Well, one reason may be that the rate of universe creation is very high and so the probability of being in a young universe is higher than being in an old one.

Addendum 2: I only gave a specific solution to the differential equation. The full solution has the form Y_1\exp(at) + Y_2 \exp(ct).  However, as long as a >c, the first term will dominate.

Addendum 3: I realized that I didn’t make it clear that the civilizations don’t need to be in the same universe. Multiverses with different parameters are predicted by string theory.  Thus, even if there is less than one civilization per universe, universes could be created at an exponentially increasing rate.