New Papers

Li, Y., Chow, C. C., Courville, A. B., Sumner, A. E. & Periwal, V. Modeling glucose and free fatty acid kinetics in glucose and meal tolerance test. Theoretical Biology and Medical Modelling 1–20 (2016). doi:10.1186/s12976-016-0036-3

Katan, M. B. et al. Impact of Masked Replacement of Sugar-Sweetened with Sugar-Free Beverages on Body Weight Increases with Initial BMI: Secondary Analysis of Data from an 18 Month Double–Blind Trial in Children. PLoS ONE 11, e0159771 (2016).

These two papers took painfully long times to be published, which was completely perplexing and frustrating given that they both seemed rather straightforward and noncontroversial. The first is a generalization of our previously developed minimal model of the fatty acid and glucose as a function of insulin to a response to an ingested meal, where the rate of appearance of fat and glucose in the blood was modeled by an empirically determined time dependent function. The second was a reanalysis of the effects of substituting sugar-sweetened beverages with non-sugar ones. We applied our childhood growth model to predict what the children ate to account for their growth. Interestingly, what we found is that the model predicted that children with higher BMI are less able to compensate for a reduction of calories than children with lower BMI. This could imply that children with higher BMI have a less sensitive caloric sensing system and thus could be prone to overeating but on the flip side, can also be “tricked” into eating less.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s