The problem with sci fi movies

I, like many people, enjoy science fiction films. The biggest problem I find in these fictional universes is not that sounds can propagate through space, people can travel at the speed of light with no relativistic effects then decelerate to a stop in a few seconds and not even be knocked to the floor, be able to generate artificial gravity everywhere, have power sources that rarely need refueling, and so forth. I accept that these are convenient plot devices that keep the story moving forward. Although I do have to say that successful films like 2001: A Space Odyssey and more recently Interstellar and The Martian show that trying to be faithful to science can often provide an even better plot device. I am still impressed by the special effects in 2001 and the amazing attention to detail of director Stanley Kubrick, e.g. near the beginning of the movie when they are on the rotating space station you can see the subtle curvature of the floor inside the rim. I hope the success of these movies lead to more realistic science fiction and even realistic action movies where the violence is realistically portrayed – people can’t be hit by a brick and then get up.

No, the thing that most irks me about science fiction movies is that the film makers either refuse or are too lazy to make their universes self-consistent. This list is in no particular order and is by no means exhaustive.

  1. Why do storm troopers in Star Wars movies wear plastic suits if they don’t protect them from anything?
  2. In an age with extremely powerful computers and communication devices, why should various control systems only be accessed at specific locations in a building or space craft. Do you really need to go to the engine room to fix the engine? Haven’t they progressed beyond a WWII aircraft carrier?
  3. Why are weapons in the future so bad? Why do people ever miss? There is self-aiming, self-guided bullet technology now and in a future universe with flying cars no one has thought of making this? This also goes for space crafts still engaging in dog fights like the Battle of Britain in 1940.
  4. In the Avenger movies, Iron Man Tony Stark invents a fusion reactor that can fit in his chest and power a flying suit for at least the duration of the movie without ever refueling. Shouldn’t this have transformed the world? This could solve global warming if not end global poverty. Even if he is not making the invention public shouldn’t the rest of the world be working on this?
  5. In the Hunger Games series they have technology to make mutant animals and plants so why is there hunger? They have a ban on GMO’s for food? Why do they still need coal mining or at least need people to do it?
  6. My very first blog post was about the thermodynamic impossibility of the premise of the Matrix movies. Stupid premises seem to be a major problem with the Warchowski sibbling’s films that I have seen. They have this pretense for being intellectual and try to infuse their films with a social consciousness but unfortunately fail. The theme in both the Matrix and the more recent film Jupiter Ascending (JA) is that there is an evil future society that treats humans as commodities – as energy in the Matrix and as a source for an immortal elixir in JA. That could be fine if in JA there was something mystical about humans that could not be reproduced elsewhere but what the Warchowskis do instead is try to infuse some science in it so it is not magic. There is a proto-human race that caused the dinosaurs on earth to go extinct so that humans could arise and then waited 65 million years before they could harvest them for the elixir. That was the easiest way to create a farm for humans? A second premise is that the heroine of the movie is an exact genetic replica of a former Queen who owns earth and who bequeathed her wealth to anyone who is a genetic replica. Again, the Warchowskis forgot to do their math. The probability of an exact genetic replica coming from chance, which is what they insisted on, would be at most 1 in 2^{10,000,000} (if differences are only biallelic common variants), which is unimaginably small. The proto-humans are also billions of years old but have not evolved in any way over that time even though squirrel-like creatures turned into humans in 65 million years on earth.
  7. Even in the movie Interstellar, there is a future race of humans that have the technology to tame a black hole and send messages to the past but they can’t send back instructions for making crops that will grow on earth?

I appreciate that some of these movies are not about science or the future but remakes of old western, adventure, or war movies. However, some are really trying to portray a possible future. If that is the case then some amount of self-consistency is necessary to make the story compelling. One very possible future that I don’t see being explored in popular movies is that unlike dystopian futures where there is a return to feudalism and people are exploited by evil overlords or capitalists, a real problem we may face is that people will become obsolete. People should make movies about what a world where machines can replace almost everything people do would look like. In fact a better premise for the Matrix is that we chose to live in a big simulacrum and a subset of us rebelled. Now that would be an interesting movie.

Selection of the week

A concerto is an orchestral piece of music that features an instrument, usually violin or piano.  A concerto grosso features a group of instruments and was popular in the baroque era.  Here is the  Christmas Concerto, Op 6 No 8 by Arcangelo Corelli played by the Galicia Symphony Orchestra.

Phasers on stun

The recent controversy over police shootings of unarmed citizens has again stirred up the debate over gun control. However, Shashaank Vattikuti points out that there is another option and that is for the police to carry nonlethal weapons like phasers with a stun option. Although, an effective long range nonlethal weapon currently does not exist (tasers just don’t cut it), a billionaire like Mark Zuckerberg, Peter Thiel, or Elon Musk could start a company to develop one. New York Times columnist Joe Nocera has suggested that Michael Bloomberg buy a gun company. There are so many guns already in existence that barring an unlikely confiscation scheme there is probably no way to get rid of them. The only way to reduce gun violence at this point is for a superior technology to make them obsolete. Hobbyists and collectors would still own guns, just as there are sword collectors, but those who own guns for protection would probably slowly switch over. However, the presence of a nonlethal option could lead to more people shooting each other so strong laws regarding their use would need to accompany their introduction.

 

 

 

 

Optimizing dynastic succession genetically

The traditional rule for succession in a monarchy is to pass from father to son. Much of King Henry VIII’s spousal folly was over his anxiety for producing an heir. However, if the basis of being a successful ruler has a genetic component then this would be the least optimal way to run an empire. For diploid sexually reproducing organisms, such as humans, the offspring inherits equal numbers of chromosomes from both parents and classically the genetic relationship or kinship coefficient between parent and child is assigned the value of 1/2.  However, there is a crucially important asymmetry in that males are heterozygous in the sex chromosomes, i.e. they inherit an X chromosome from their mothers and a Y from their fathers, while females are homozygous, inheriting an X from both. Now the X is about 100 million base pairs longer than the Y, which accounts for about 2 percent of the (father’s) genome (counting chromosomes separately). Additionally, given that everyone has at least one X while only males have a Y, the Y cannot contain genes that are crucial for survival and in fact there are much fewer genes on the Y than the X (~800 vs ~50). The Y has been shrinking in mammals over time and there is a debate about its importance and eventual fate (e.g. see here).

We can compute the sex chromosome adjusted genetic correlation coefficients between parents and children.  Let the father’s genetic content be F=F_S + F_D, where F_S is the genetic content passed to sons (half of the autosomes plus the Y chromosome) and F_D is that passed to daughters (half of the autosomes plus the X) and similarly M=M_S+M_D. The son genetic content is then S=F_S+M_S and daughter is D=F_D+M_D. We can treat F and M as a string of random variables with variance 1/(length of mother’s genome) and assuming that the genetic correlation between fathers and mothers is zero (i.e. no inbreeding and no assortative mating) then the correlation coefficient between father and son is

\langle FS\rangle = \frac{ \langle F_S^2\rangle}{\sqrt{\langle F_S^2\rangle+\langle F_D^2\rangle}\sqrt{\langle F_S^2\rangle+\langle M_S^2\rangle}}=\frac{ 1}{\sqrt{1+\langle F_D^2\rangle/\langle F_S^2\rangle}\sqrt{1+\langle M_S^2\rangle/\langle F_S^2\rangle}}

and similarly:

\langle FD\rangle =\frac{ 1}{\sqrt{1+\langle F_S^2\rangle/\langle F_D^2\rangle}\sqrt{1+\langle M_D^2\rangle/\langle F_D^2\rangle}}

\langle MS\rangle =\frac{ 1}{\sqrt{1+\langle M_D^2\rangle/\langle M_S^2\rangle}\sqrt{1+\langle F_S^2\rangle/\langle M_S^2\rangle}}

\langle MD\rangle =\frac{ 1}{\sqrt{1+\langle M_S^2\rangle/\langle M_D^2\rangle}\sqrt{1+\langle F_D^2\rangle/\langle M_D^2\rangle}}

Now, if you assume that genetic content is homogeneous among all chromosomes then that would mean that the genetic material that fathers pass on to sons is 0.48 of the total and thus \langle F_S^2\rangle = 0.48 while \langle F_D^2\rangle = 0.5, \langle M_S^2\rangle = 0.5, and \langle M_D^2\rangle = 0.5 implying that \langle FS\rangle = 0.49\langle FD\rangle = 0.51\langle MS\rangle = 0.51\langle MD\rangle = 0.5 . Hence, parents are more correlated with their children of the opposite sex and fathers are least correlated with their sons. These numbers also probably underestimate the asymmetry. If genetic relationship is the most important factor for royal succession then a dynasty based on opposite sex succession will be more logical than the father to son model.

 

 

Selection of the week

Here’s a concert I wish I could have attended. A young Glenn Gould (greatest Bach interpreter since Bach although I heard Felix Mendelssohn was pretty good too) with Leonard Bernstein in his prime conducting the New York Philharmonic (I think) playing the first movement of JS Bach’s Keyboard Concerto in D minor, BWV 1052.

There is a famous incident of a Gould performance of the Brahms Piano Concerto 1 when he and Bernstein had such a disagreement on the tempo (Gould wanted to play it really slow) that Bernstein got up on stage beforehand to make a disclaimer. That performance with speech is recorded and someone has uploaded it to YouTube.

Gould gave up performing in 1964 at age 31. Notice how low he likes to sit at the piano. He used to bring his chair with him when he toured. One of my favourite films is “Thirty two short films about Glenn Gould,” which I definitely recommend seeing.

2014 Reith Lectures by Atul Gawande

Harvard surgeon and author Atul Gawande presented four BBC Reith Lectures in 2014 about various aspects of medicine.  It is impossible to read or listen to Gawande and not come away profoundly moved.  You can download the episodes directly from the BBC or from CBC’s radio program Ideas.  Here is an interview with Gawande on the new Medical website Stat.

Are we in a fusion renaissance?

Fusion is a potentially unlimited source of non-carbon emitting energy. It requires the mashing together of small nuclei such as deuterium and tritium to make another nucleus and a lot of leftover energy. The problem is that nuclei do not want to be mashed together and thus to achieve fusion you need something to confine high energy nuclei for a long enough time. Currently, there are only two methods that have successfully demonstrated fusion: 1) gravitational confinement as in the center of a star, and 2) inertial confinement as in a nuclear bomb. In order to get nuclei at high enough energy to overcome the energy barrier for a fusion reaction, electrons can no longer be bound to nuclei to form atoms. A gas of quasi-neutral hot nuclei and electrons is called a plasma and has often been dubbed the fourth state of matter. Hence, the physics of fusion is mostly the physics of plasmas.

My PhD work was in plasma physics and although my thesis ultimately dealt with chaos in nonlinear partial differential equations, my early projects were tangentially related to fusion. At that time there were two approaches to attaining fusion, one was to try to do controlled inertial confinement by using massive lasers to implode a tiny pellet of fuel and the second was to use magnetic confinement in a tokamak reactor. Government sponsored research has been focused almost exclusively on these two approaches for the past forty years. There is a huge laser fusion lab at Livermore and an even bigger global project for magnetic confinement fusion in Cadarache France, called ITER. As of today, neither has proven that they will ever be viable sources of energy although there is evidence of break even where the reactors produce more energy than is put in.

However, these approaches may not ultimately be viable and there really has not been much research funding to pursue alternative strategies. This recent New York Times article reports on a set of privately funded efforts to achieve fusion backed by some big names in technology including Paul Allen, Jeff Bezos and Peter Thiel. Although there is well deserved skepticism for the success of these companies,  (I’m sure my thesis advisor Abe Bers would have had some insightful things to say about them), the time may be ripe for new approaches. In an impressive talk I heard many years ago, roboticist Rodney Brooks remarked that Moore’s Law has allowed robotics to finally be widely available because you could use software to compensate for hardware. Instead of requiring cost prohibitive high precision motors, you could use cheap ones and use software to control them. The hybrid car is only possible because of the software to decide when to use the electric motor and when to use the gas engine. The same idea may also apply to fusion. Fusion is so difficult because plasmas are inherently unstable. Most of the past effort has been geared towards designing physical systems to contain them. However, I can now imagine using software instead.

Finally, government attempts have mostly focused on using a Deuterium-Tritium fusion reaction because it has the highest yield. The problem with this reaction is that it produces a neutron, which then destroys the reactor. However, there are reactions that do not produce neutrons (see here). Abe used to joke that that we could mine the moon for Helium 3 to use in a Deuterium-Helium 3 reactor. So, although we may never have viable fusion on earth, it could be a source of energy on Elon Musk’s moon base, although solar would probably be a lot cheaper.

Proving I’m me

I have an extremely difficult time remembering the answers to my security questions for restoring forgotten passwords. I don’t have an invariant favourite movie, or book, or colour. I have many best friends from childhood and they have various permutations of their names. Did I use their first name, nick name, full name? Even my Mother’s maiden name can be problematic because there are various ways to transliterate Chinese names and I don’t always remember which I used. The city I met my wife is ambiguous. Did I use the specific town per se or the major city the town is next to? Did I include the model of my first car or just the make. Before I can work my way through the various permutations, I’m usually locked out of my account forever.

As much as I appreciate and rely on computers, software, and the internet, objectively they all still suck. My iPhone is perhaps better than the alternative but it sucks. My laptop sucks. Apple makes awful products. Google, Amazon, Uber and the rest are not so great either. I don’t remember all the times Google Maps has steered me wrong. The tech landscape may be saturated but there is definitely room for something better.

Commentary on the Blue Brain Project

Definitely read Christof Koch and Michael Buice’s commentary on the Blue Brain Project paper in Cell. They nicely summarize all the important points of the paper and propose a Turing Test for models. The performance of a model can be assessed by how long it would take an experimenter to figure out if the data from proposed neurophysiological experiments was coming from a model or the real thing. I think that this is a nice idea but there is one big difference between the Turing Test for artificial intelligence and brain simulations and that is that everyone has an innate sense of what it means to be human but no one knows what a real brain should be doing. In that sense, it is not really a Turing Test per se but rather the replication of experiments in a more systematic way than is done now. You do an experiment on a real brain then repeat it on the model and see if they get comparable results.