Archive for the ‘Education’ Category

The failure of science museums (and some radio shows)

May 30, 2013

Three years ago, I posted my ambivalence about science museums. I recently accompanied my seven year old on a field trip to one and now I am of the firm belief that they have very little utility for educating children about science.  Current science museums strive to be as interactive as possible. Many of the exhibits perform some simple experiment where the user participates by pulling or pushing some buttons or knobs. However, unless you are patient enough to read the information placard, the exhibits are more like toys or video games. I’m sure there are seven year olds out there that do read all the information and are enriched by the exhibits but not the ones I chaperoned. Their level of engagement with each exhibit did vary but if any scientific information was transferred, I would be shocked. The juxtaposition of interactivity and passive reading is just a bad idea. If you want to be interactive then all the information must be presented interactively.  No child and probably most adults won’t bother to read a sign before randomly hitting some buttons to see what happens. It may work better if there were some sort of gate that prevented access to the exhibit until the introductory information was read. I don’t know what the optimal format would be.

While I’m in the ranting mood, I’m also going to criticize my  favourite childhood radio show Quirks and Quarks on CBC. The problem I have with the show these days is that it basically only covers astronomy, dinosaurs, and animal behavior. Occasionally, it will also cover high energy physics or climate change. It pays scant attention to the rest of biology, physics, chemistry, computer science, or mathematics. The show does a very poor job of giving the public an idea of what most scientists really do and what constitutes scientific breakthroughs. I think it is more important now than ever that science shows try to educate the public on how the scientific method really works, to get across how difficult it can be to come up with experiments to test hypotheses and how long it takes to get from breakthroughs in the lab to applications. They should also better convey the sense of how it is impossible to predict what will become useful in the future and how lots and lots of failure is a prerequisite for progress. I hope Quirks and Quarks will become more serious because it’s migrating its way to the bottom of my podcast stack.

 

Is abstract thinking necessary?

August 1, 2012

Noted social scientist, Andrew Hacker, wrote a provocative opinion piece in the New York Times Sunday arguing that we relax mathematics requirements for higher education. Here are some excerpts from his piece:

New York Times: A TYPICAL American school day finds some six million high school students and two million college freshmen struggling with algebra. In both high school and college, all too many students are expected to fail. Why do we subject American students to this ordeal? I’ve found myself moving toward the strong view that we shouldn’t.

…There are many defenses of algebra and the virtue of learning it. Most of them sound reasonable on first hearing; many of them I once accepted. But the more I examine them, the clearer it seems that they are largely or wholly wrong — unsupported by research or evidence, or based on wishful logic. (I’m not talking about quantitative skills, critical for informed citizenship and personal finance, but a very different ballgame.)

…The toll mathematics takes begins early. To our nation’s shame, one in four ninth graders fail to finish high school. In South Carolina, 34 percent fell away in 2008-9, according to national data released last year; for Nevada, it was 45 percent. Most of the educators I’ve talked with cite algebra as the major academic reason.

The expected reaction from some of my colleagues was understandably negative. After all, we live in a world that is becoming more complex requiring more mathematical skills not less. Mathematics is as essential to one’s education as reading. In the past, I too would have whole heartedly agreed. However, over the past few years I have started think otherwise. Just to clarify, Hacker does not (nor I) believe that critical thinking is unimportant. He argues forcefully that all citizens should have a fundamental grounding in the concepts of arithmetic, statistics and quantitative reasoning. I have even posted before (see here)  that I thought mathematics should be part of the accepted canon of what an educated citizen should know and I’m not backing away from that belief. Hacker thinks we should be taught a “citizen’s statistics” course. My suggested course was:  “Science and mathematics survival tools for the modern world.”  The question is whether or not we should expect all students to master the abstract reasoning skills necessary for algebra.

I’ll probably catch a lot of flack for saying this but from my professional and personal experience, I believe that there is a significant fraction of the population that is either unable or unwilling to think abstractly.  I also don’t think we can separate lack of desire from lack of ability. The willingness to learn something may be just as “innate” as the ability to do something. I think everyone can agree that on the abstract thinking scale almost everyone can learn to add and subtract but only a select few can understand cohomology theory.  In our current system, we put high school algebra as the minimum threshold, but is this a reasonable place to draw the line? What we need to know  is the distribution of people’s maximum capacity for abstract thinking. The current model requires that  the distribution be  almost zero left of algebra with a fat tail on the right. But what if the actual distribution is broad with a peak somewhere near calculus?  In this case, there would be a large fraction of the population to the left of algebra. This is pure speculation but there could even be a neurophysiological basis to abstract thinking in terms of the fraction of neural connections within higher cortical areas versus connections between cortical and sensory areas. There could be a trade-off between abstract thinking and sensory processing. This need not even be purely genetic. As I posted before, not all the neural connections can be set by the genome so most are either random or arise through plasticity.

To me, the most important issue that Hacker brings up is not whether or not we should make everyone learn algebra but what should we do about the people who don’t and as a result are denied the opportunity to attend college and secure a financially stable life. Should we devote our resources to try to teach it to them better or should we develop alternative ways for these people to be productive in our society? I really think we should re-evaluate the goal that everyone goes to college. In fact, given the exorbitant cost and the rise of online education, the trend away from traditional college may have already begun. We should put more emphasis on apprenticeship programs and community colleges. Given the rapid rate of change in the job market, education and training should be thought of as a continual process instead of the current model of four years and out. I do believe that a functional democracy requires an educated citizenry. However, college attendance has been steadily increasing the past few decades but one would be hard pressed to argue that democracy has concomitantly improved. A new model may be in order.

Science Museums

August 23, 2010

When I was a child, I lived across the street from the Ontario Science Centre.  I loved the place and would go quite often.  When it first opened 40 years ago, the Science Centre was quite innovative in  its use of interactive exhibits and demonstrations as well as its architecture.  It drapes over  the side of a valley.  I still remember the excitement of riding down the escalators to the lowest levels where my favourite exhibits were.

I went back to the Science Centre this past weekend for the first time in several decades.  It has changed quite a bit but some of the old exhibits still exist in a room called the Science Arcade.  The architecture looks a little dated on the outside but holds up fairly well on the inside.  As I walked around, I wondered whether people actually learn anything at these museums.  There are lots of neat things to play with but do they actually get it.  An example is an exhibit of a Cartesian Diver, which consists of a small glass fish inside a cylinder of water.  The fish is partially filled with water.  The visitor pushes a button that pumps air into the cylinder and the fish sinks to the bottom.  However, there wasn’t a detailed explanation of how it works.  The write up basically said that as air is pumped into the cylinder the pressure rises and squeezes the air inside the fish.  It didn’t say explicitly that the fish had a hole in it so that water could move in and out and as the air in the fish was being squeezed by the water moving in due to the increased pressure, the fish became less buoyant and thus sank.  I saw a boy watch the fish sink and say, “how did that happen?”  Perhaps, the exhibit will spur his curiosity to learn more about it.

I believe the current idea of curators who design science museums and exhibits is that science museums should try to make science fun and cool.  Thus the exhibits need to been highly interactive and entertaining.   Maybe this is the right strategy and people do get a lot out of visiting science museums.  I really don’t know.  The National Academy of Sciences has a report, which I haven’t read, on this very issue.  I think having a science literate public is more important now than ever.   Do science museums play an important role in educating the public?


Follow

Get every new post delivered to your Inbox.

Join 115 other followers